Model Fungsi Agregat Kisi TF

Lihat di TensorFlow.org Jalankan di Google Colab Lihat sumber di GitHub Unduh buku catatan

Ringkasan

TFL Premade Agregat Fungsi Model yang cepat dan mudah cara untuk membangun TFL tf.keras.model contoh untuk belajar fungsi agregasi kompleks. Panduan ini menguraikan langkah-langkah yang diperlukan untuk membangun Model Fungsi Agregat Premade TFL dan melatih/mengujinya.

Mempersiapkan

Menginstal paket TF Lattice:

pip install -q tensorflow-lattice pydot

Mengimpor paket yang dibutuhkan:

import tensorflow as tf

import collections
import logging
import numpy as np
import pandas as pd
import sys
import tensorflow_lattice as tfl
logging.disable(sys.maxsize)

Mengunduh kumpulan data Puzzles:

train_dataframe = pd.read_csv(
    'https://raw.githubusercontent.com/wbakst/puzzles_data/master/train.csv')
train_dataframe.head()
test_dataframe = pd.read_csv(
    'https://raw.githubusercontent.com/wbakst/puzzles_data/master/test.csv')
test_dataframe.head()

Ekstrak dan konversi fitur dan label

# Features:
# - star_rating       rating out of 5 stars (1-5)
# - word_count        number of words in the review
# - is_amazon         1 = reviewed on amazon; 0 = reviewed on artifact website
# - includes_photo    if the review includes a photo of the puzzle
# - num_helpful       number of people that found this review helpful
# - num_reviews       total number of reviews for this puzzle (we construct)
#
# This ordering of feature names will be the exact same order that we construct
# our model to expect.
feature_names = [
    'star_rating', 'word_count', 'is_amazon', 'includes_photo', 'num_helpful',
    'num_reviews'
]
def extract_features(dataframe, label_name):
  # First we extract flattened features.
  flattened_features = {
      feature_name: dataframe[feature_name].values.astype(float)
      for feature_name in feature_names[:-1]
  }

  # Construct mapping from puzzle name to feature.
  star_rating = collections.defaultdict(list)
  word_count = collections.defaultdict(list)
  is_amazon = collections.defaultdict(list)
  includes_photo = collections.defaultdict(list)
  num_helpful = collections.defaultdict(list)
  labels = {}

  # Extract each review.
  for i in range(len(dataframe)):
    row = dataframe.iloc[i]
    puzzle_name = row['puzzle_name']
    star_rating[puzzle_name].append(float(row['star_rating']))
    word_count[puzzle_name].append(float(row['word_count']))
    is_amazon[puzzle_name].append(float(row['is_amazon']))
    includes_photo[puzzle_name].append(float(row['includes_photo']))
    num_helpful[puzzle_name].append(float(row['num_helpful']))
    labels[puzzle_name] = float(row[label_name])

  # Organize data into list of list of features.
  names = list(star_rating.keys())
  star_rating = [star_rating[name] for name in names]
  word_count = [word_count[name] for name in names]
  is_amazon = [is_amazon[name] for name in names]
  includes_photo = [includes_photo[name] for name in names]
  num_helpful = [num_helpful[name] for name in names]
  num_reviews = [[len(ratings)] * len(ratings) for ratings in star_rating]
  labels = [labels[name] for name in names]

  # Flatten num_reviews
  flattened_features['num_reviews'] = [len(reviews) for reviews in num_reviews]

  # Convert data into ragged tensors.
  star_rating = tf.ragged.constant(star_rating)
  word_count = tf.ragged.constant(word_count)
  is_amazon = tf.ragged.constant(is_amazon)
  includes_photo = tf.ragged.constant(includes_photo)
  num_helpful = tf.ragged.constant(num_helpful)
  num_reviews = tf.ragged.constant(num_reviews)
  labels = tf.constant(labels)

  # Now we can return our extracted data.
  return (star_rating, word_count, is_amazon, includes_photo, num_helpful,
          num_reviews), labels, flattened_features
train_xs, train_ys, flattened_features = extract_features(train_dataframe, 'Sales12-18MonthsAgo')
test_xs, test_ys, _ = extract_features(test_dataframe, 'SalesLastSixMonths')
# Let's define our label minimum and maximum.
min_label, max_label = float(np.min(train_ys)), float(np.max(train_ys))
min_label, max_label = float(np.min(train_ys)), float(np.max(train_ys))

Menyetel nilai default yang digunakan untuk pelatihan dalam panduan ini:

LEARNING_RATE = 0.1
BATCH_SIZE = 128
NUM_EPOCHS = 500
MIDDLE_DIM = 3
MIDDLE_LATTICE_SIZE = 2
MIDDLE_KEYPOINTS = 16
OUTPUT_KEYPOINTS = 8

Konfigurasi Fitur

Fitur kalibrasi dan konfigurasi per-fitur diatur menggunakan tfl.configs.FeatureConfig . Konfigurasi fitur termasuk kendala monotonisitas, regularisasi per-fitur (lihat tfl.configs.RegularizerConfig ), dan ukuran kisi untuk model kisi.

Perhatikan bahwa kita harus sepenuhnya menentukan konfigurasi fitur untuk fitur apa pun yang kita ingin model kita kenali. Jika tidak, model tidak akan mengetahui bahwa fitur seperti itu ada. Untuk model agregasi, fitur ini akan secara otomatis dianggap dan ditangani dengan benar sebagai compang-camping.

Hitung Kuantitas

Meskipun pengaturan default untuk pwl_calibration_input_keypoints di tfl.configs.FeatureConfig adalah 'quantiles', untuk model premade kita harus secara manual menentukan keypoints masukan. Untuk melakukannya, pertama-tama kita mendefinisikan fungsi pembantu kita sendiri untuk menghitung kuantil.

def compute_quantiles(features,
                      num_keypoints=10,
                      clip_min=None,
                      clip_max=None,
                      missing_value=None):
  # Clip min and max if desired.
  if clip_min is not None:
    features = np.maximum(features, clip_min)
    features = np.append(features, clip_min)
  if clip_max is not None:
    features = np.minimum(features, clip_max)
    features = np.append(features, clip_max)
  # Make features unique.
  unique_features = np.unique(features)
  # Remove missing values if specified.
  if missing_value is not None:
    unique_features = np.delete(unique_features,
                                np.where(unique_features == missing_value))
  # Compute and return quantiles over unique non-missing feature values.
  return np.quantile(
      unique_features,
      np.linspace(0., 1., num=num_keypoints),
      interpolation='nearest').astype(float)

Mendefinisikan Konfigurasi Fitur Kami

Sekarang setelah kami dapat menghitung kuantil kami, kami mendefinisikan konfigurasi fitur untuk setiap fitur yang kami ingin model kami ambil sebagai input.

# Feature configs are used to specify how each feature is calibrated and used.
feature_configs = [
    tfl.configs.FeatureConfig(
        name='star_rating',
        lattice_size=2,
        monotonicity='increasing',
        pwl_calibration_num_keypoints=5,
        pwl_calibration_input_keypoints=compute_quantiles(
            flattened_features['star_rating'], num_keypoints=5),
    ),
    tfl.configs.FeatureConfig(
        name='word_count',
        lattice_size=2,
        monotonicity='increasing',
        pwl_calibration_num_keypoints=5,
        pwl_calibration_input_keypoints=compute_quantiles(
            flattened_features['word_count'], num_keypoints=5),
    ),
    tfl.configs.FeatureConfig(
        name='is_amazon',
        lattice_size=2,
        num_buckets=2,
    ),
    tfl.configs.FeatureConfig(
        name='includes_photo',
        lattice_size=2,
        num_buckets=2,
    ),
    tfl.configs.FeatureConfig(
        name='num_helpful',
        lattice_size=2,
        monotonicity='increasing',
        pwl_calibration_num_keypoints=5,
        pwl_calibration_input_keypoints=compute_quantiles(
            flattened_features['num_helpful'], num_keypoints=5),
        # Larger num_helpful indicating more trust in star_rating.
        reflects_trust_in=[
            tfl.configs.TrustConfig(
                feature_name="star_rating", trust_type="trapezoid"),
        ],
    ),
    tfl.configs.FeatureConfig(
        name='num_reviews',
        lattice_size=2,
        monotonicity='increasing',
        pwl_calibration_num_keypoints=5,
        pwl_calibration_input_keypoints=compute_quantiles(
            flattened_features['num_reviews'], num_keypoints=5),
    )
]

Model Fungsi Agregat

Untuk membangun sebuah model premade TFL, pertama membangun sebuah konfigurasi Model dari tfl.configs . Model fungsi agregat dibangun menggunakan tfl.configs.AggregateFunctionConfig . Ini menerapkan kalibrasi piecewise-linear dan kategoris, diikuti oleh model kisi pada setiap dimensi input kasar. Ini kemudian menerapkan lapisan agregasi di atas output untuk setiap dimensi. Ini kemudian diikuti oleh kalibrasi linier sepotong-sepotong keluaran opsional.

# Model config defines the model structure for the aggregate function model.
aggregate_function_model_config = tfl.configs.AggregateFunctionConfig(
    feature_configs=feature_configs,
    middle_dimension=MIDDLE_DIM,
    middle_lattice_size=MIDDLE_LATTICE_SIZE,
    middle_calibration=True,
    middle_calibration_num_keypoints=MIDDLE_KEYPOINTS,
    middle_monotonicity='increasing',
    output_min=min_label,
    output_max=max_label,
    output_calibration=True,
    output_calibration_num_keypoints=OUTPUT_KEYPOINTS,
    output_initialization=np.linspace(
        min_label, max_label, num=OUTPUT_KEYPOINTS))
# An AggregateFunction premade model constructed from the given model config.
aggregate_function_model = tfl.premade.AggregateFunction(
    aggregate_function_model_config)
# Let's plot our model.
tf.keras.utils.plot_model(
    aggregate_function_model, show_layer_names=False, rankdir='LR')

png

Output dari setiap lapisan Agregasi adalah output rata-rata dari kisi yang dikalibrasi di atas input yang tidak rata. Berikut adalah model yang digunakan di dalam lapisan Agregasi pertama:

aggregation_layers = [
    layer for layer in aggregate_function_model.layers
    if isinstance(layer, tfl.layers.Aggregation)
]
tf.keras.utils.plot_model(
    aggregation_layers[0].model, show_layer_names=False, rankdir='LR')

png

Sekarang, karena dengan lainnya tf.keras.Model , kita mengkompilasi dan sesuai dengan model data kami.

aggregate_function_model.compile(
    loss='mae',
    optimizer=tf.keras.optimizers.Adam(LEARNING_RATE))
aggregate_function_model.fit(
    train_xs, train_ys, epochs=NUM_EPOCHS, batch_size=BATCH_SIZE, verbose=False)
<tensorflow.python.keras.callbacks.History at 0x7fee7d3033c8>

Setelah melatih model kami, kami dapat mengevaluasinya di set pengujian kami.

print('Test Set Evaluation...')
print(aggregate_function_model.evaluate(test_xs, test_ys))
Test Set Evaluation...
7/7 [==============================] - 2s 3ms/step - loss: 53.4633
53.4632682800293