View source on GitHub |
Classes defining trained TFL model structure and parameter information.
This package provides representations and tools for analysis of a trained TF Lattice model, e.g. a canned estimator in saved model format.
Classes
class CategoricalCalibrationNode
: Represetns a categorical calibration layer.
class InputFeatureNode
: Input features to the model.
class KroneckerFactoredLatticeNode
: Represents a kronecker-factored lattice layer.
class LatticeNode
: Represetns a lattice layer.
class LinearNode
: Represents a linear layer.
class MeanNode
: Represents an averaging layer.
class ModelGraph
: Model info and parameter as a graph.
class PWLCalibrationNode
: Represetns a PWL calibration layer.
Other Members | |
---|---|
absolute_import |
Instance of __future__._Feature
|
division |
Instance of __future__._Feature
|
print_function |
Instance of __future__._Feature
|