View source on GitHub |
Laplacian regularizer for tfl.layers.Lattice
layer.
tfl.lattice_layer.LaplacianRegularizer(
lattice_sizes, l1=0.0, l2=0.0
)
Laplacian regularizer penalizes the difference between adjacent vertices in multi-cell lattice (see publication).
Consider a 3 x 2 lattice with weights w
:
w[3]-----w[4]-----w[5]
| | |
| | |
w[0]-----w[1]-----w[2]
where the number at each node represents the weight index. In this case, the laplacian regularizer is defined as:
l1[0] * (|w[1] - w[0]| + |w[2] - w[1]| +
|w[4] - w[3]| + |w[5] - w[4]|) +
l1[1] * (|w[3] - w[0]| + |w[4] - w[1]| + |w[5] - w[2]|) +
l2[0] * ((w[1] - w[0])^2 + (w[2] - w[1])^2 +
(w[4] - w[3])^2 + (w[5] - w[4])^2) +
l2[1] * ((w[3] - w[0])^2 + (w[4] - w[1])^2 + (w[5] - w[2])^2)
Args | |
---|---|
lattice_sizes
|
Lattice sizes of tfl.layers.Lattice to regularize.
|
l1
|
l1 regularization amount. Either single float or list or tuple of floats to specify different regularization amount per dimension. |
l2
|
l2 regularization amount. Either single float or list or tuple of floats to specify different regularization amount per dimension. |
Raises | |
---|---|
ValueError
|
If provided input does not correspond to lattice_sizes .
|
Methods
from_config
@classmethod
from_config( config )
Creates a regularizer from its config.
This method is the reverse of get_config
,
capable of instantiating the same regularizer from the config
dictionary.
This method is used by TF-Keras model_to_estimator
, saving and
loading models to HDF5 formats, TF-Keras model cloning, some
visualization utilities, and exporting models to and from JSON.
Args | |
---|---|
config
|
A Python dictionary, typically the output of get_config. |
Returns | |
---|---|
A regularizer instance. |
get_config
get_config()
Standard Keras config for serialization.
__call__
__call__(
x
)
Returns regularization loss for x
.