View source on GitHub |
Algorithm implementations required for Kronecker-Factored Lattice layer.
Functions
assert_constraints(...)
: Asserts that weights satisfy constraints.
bias_initializer(...)
: Initializes bias depending on output_min and output_max.
custom_reduce_prod(...)
: tf.reduce_prod(t, axis) with faster custom gradient.
default_init_params(...)
: Returns default initialization bounds depending on layer output bounds.
evaluate_with_hypercube_interpolation(...)
: Evaluates a Kronecker-Factored Lattice using hypercube interpolation.
finalize_scale_constraints(...)
: Clips scale to strictly satisfy all constraints.
finalize_weight_constraints(...)
: Approximately projects weights to strictly satisfy all constraints.
kfl_random_monotonic_initializer(...)
: Returns a uniformly random sampled monotonic weight tensor.
scale_initializer(...)
: Initializes scale depending on output_min and output_max.
verify_hyperparameters(...)
: Verifies that all given hyperparameters are consistent.
Other Members | |
---|---|
absolute_import |
Instance of __future__._Feature
|
division |
Instance of __future__._Feature
|
print_function |
Instance of __future__._Feature
|