Visualizza su TensorFlow.org | Esegui in Google Colab | Visualizza l'origine su GitHub | Scarica quaderno |
Panoramica
Questo tutorial mostra come creare tf.data.Dataset
da un server di database PostgreSQL, in modo che il creato Dataset
potrebbe essere passato a tf.keras
per scopi di addestramento o di inferenza.
Un database SQL è un'importante fonte di dati per i data scientist. Come uno dei più popolari database SQL open source, PostgreSQL è ampiamente usato nelle imprese per la memorizzazione dei dati critial e transazionali su tutta la linea. Creazione di Dataset
da un server di database PostgreSQL direttamente e passare il Dataset
per tf.keras
per la formazione o l'inferenza, potrebbe semplificare notevolmente lo scienziato dei dati pipeline dei dati e aiutano a concentrarsi sulla costruzione di modelli di apprendimento automatico.
Configurazione e utilizzo
Installa i pacchetti tensorflow-io richiesti e riavvia il runtime
try:
%tensorflow_version 2.x
except Exception:
pass
!pip install -q tensorflow-io
Installa e configura PostgreSQL (opzionale)
Per dimostrare l'utilizzo su Google Colab installerai il server PostgreSQL. Sono necessarie anche la password e un database vuoto.
Se non utilizzi questo blocco note su Google Colab o preferisci utilizzare un database esistente, salta la configurazione seguente e passa alla sezione successiva.
# Install postgresql server
sudo apt-get -y -qq update
sudo apt-get -y -qq install postgresql
sudo service postgresql start
# Setup a password `postgres` for username `postgres`
sudo -u postgres psql -U postgres -c "ALTER USER postgres PASSWORD 'postgres';"
# Setup a database with name `tfio_demo` to be used
sudo -u postgres psql -U postgres -c 'DROP DATABASE IF EXISTS tfio_demo;'
sudo -u postgres psql -U postgres -c 'CREATE DATABASE tfio_demo;'
Preconfiguring packages ... Selecting previously unselected package libpq5:amd64. (Reading database ... 254633 files and directories currently installed.) Preparing to unpack .../0-libpq5_10.15-0ubuntu0.18.04.1_amd64.deb ... Unpacking libpq5:amd64 (10.15-0ubuntu0.18.04.1) ... Selecting previously unselected package postgresql-client-common. Preparing to unpack .../1-postgresql-client-common_190ubuntu0.1_all.deb ... Unpacking postgresql-client-common (190ubuntu0.1) ... Selecting previously unselected package postgresql-client-10. Preparing to unpack .../2-postgresql-client-10_10.15-0ubuntu0.18.04.1_amd64.deb ... Unpacking postgresql-client-10 (10.15-0ubuntu0.18.04.1) ... Selecting previously unselected package ssl-cert. Preparing to unpack .../3-ssl-cert_1.0.39_all.deb ... Unpacking ssl-cert (1.0.39) ... Selecting previously unselected package postgresql-common. Preparing to unpack .../4-postgresql-common_190ubuntu0.1_all.deb ... Adding 'diversion of /usr/bin/pg_config to /usr/bin/pg_config.libpq-dev by postgresql-common' Unpacking postgresql-common (190ubuntu0.1) ... Selecting previously unselected package postgresql-10. Preparing to unpack .../5-postgresql-10_10.15-0ubuntu0.18.04.1_amd64.deb ... Unpacking postgresql-10 (10.15-0ubuntu0.18.04.1) ... Selecting previously unselected package postgresql. Preparing to unpack .../6-postgresql_10+190ubuntu0.1_all.deb ... Unpacking postgresql (10+190ubuntu0.1) ... Selecting previously unselected package sysstat. Preparing to unpack .../7-sysstat_11.6.1-1ubuntu0.1_amd64.deb ... Unpacking sysstat (11.6.1-1ubuntu0.1) ... Setting up sysstat (11.6.1-1ubuntu0.1) ... Creating config file /etc/default/sysstat with new version update-alternatives: using /usr/bin/sar.sysstat to provide /usr/bin/sar (sar) in auto mode Created symlink /etc/systemd/system/multi-user.target.wants/sysstat.service → /lib/systemd/system/sysstat.service. Setting up ssl-cert (1.0.39) ... Setting up libpq5:amd64 (10.15-0ubuntu0.18.04.1) ... Setting up postgresql-client-common (190ubuntu0.1) ... Setting up postgresql-common (190ubuntu0.1) ... Adding user postgres to group ssl-cert Creating config file /etc/postgresql-common/createcluster.conf with new version Building PostgreSQL dictionaries from installed myspell/hunspell packages... Removing obsolete dictionary files: Created symlink /etc/systemd/system/multi-user.target.wants/postgresql.service → /lib/systemd/system/postgresql.service. Setting up postgresql-client-10 (10.15-0ubuntu0.18.04.1) ... update-alternatives: using /usr/share/postgresql/10/man/man1/psql.1.gz to provide /usr/share/man/man1/psql.1.gz (psql.1.gz) in auto mode Setting up postgresql-10 (10.15-0ubuntu0.18.04.1) ... Creating new PostgreSQL cluster 10/main ... /usr/lib/postgresql/10/bin/initdb -D /var/lib/postgresql/10/main --auth-local peer --auth-host md5 The files belonging to this database system will be owned by user "postgres". This user must also own the server process. The database cluster will be initialized with locale "C.UTF-8". The default database encoding has accordingly been set to "UTF8". The default text search configuration will be set to "english". Data page checksums are disabled. fixing permissions on existing directory /var/lib/postgresql/10/main ... ok creating subdirectories ... ok selecting default max_connections ... 100 selecting default shared_buffers ... 128MB selecting default timezone ... Etc/UTC selecting dynamic shared memory implementation ... posix creating configuration files ... ok running bootstrap script ... ok performing post-bootstrap initialization ... ok syncing data to disk ... ok Success. You can now start the database server using: /usr/lib/postgresql/10/bin/pg_ctl -D /var/lib/postgresql/10/main -l logfile start Ver Cluster Port Status Owner Data directory Log file 10 main 5432 down postgres /var/lib/postgresql/10/main /var/log/postgresql/postgresql-10-main.log update-alternatives: using /usr/share/postgresql/10/man/man1/postmaster.1.gz to provide /usr/share/man/man1/postmaster.1.gz (postmaster.1.gz) in auto mode Setting up postgresql (10+190ubuntu0.1) ... Processing triggers for man-db (2.8.3-2ubuntu0.1) ... Processing triggers for ureadahead (0.100.0-21) ... Processing triggers for libc-bin (2.27-3ubuntu1.2) ... Processing triggers for systemd (237-3ubuntu10.38) ... ALTER ROLE NOTICE: database "tfio_demo" does not exist, skipping DROP DATABASE CREATE DATABASE
Impostare le variabili ambientali necessarie
Le seguenti variabili ambientali si basano sull'impostazione di PostgreSQL nell'ultima sezione. Se hai una configurazione diversa o stai utilizzando un database esistente, dovrebbero essere modificati di conseguenza:
%env TFIO_DEMO_DATABASE_NAME=tfio_demo
%env TFIO_DEMO_DATABASE_HOST=localhost
%env TFIO_DEMO_DATABASE_PORT=5432
%env TFIO_DEMO_DATABASE_USER=postgres
%env TFIO_DEMO_DATABASE_PASS=postgres
env: TFIO_DEMO_DATABASE_NAME=tfio_demo env: TFIO_DEMO_DATABASE_HOST=localhost env: TFIO_DEMO_DATABASE_PORT=5432 env: TFIO_DEMO_DATABASE_USER=postgres env: TFIO_DEMO_DATABASE_PASS=postgres
Prepara i dati nel server PostgreSQL
A scopo dimostrativo, questo tutorial creerà un database e popolerà il database con alcuni dati. I dati utilizzati in questo tutorial è da Air Quality Data Set , disponibile presso l'apprendimento automatico UCI Repository .
Di seguito è riportata un'anteprima di un sottoinsieme del set di dati sulla qualità dell'aria:
Data|Ora|CO(GT)|PT08.S1(CO)|NMHC(GT)|C6H6(GT)|PT08.S2(NMHC)|NOx(GT)|PT08.S3(NOx)|NO2(GT)| PT08.S4(NO2)|PT08.S5(O3)|T|RH|AH| ----|----|------|-----------|--------|--------|--- ----------|----|----------|-------|------------|-- ---------|-|--|--| 10/03/2004|18.00.00|2,6|1360|150|11,9|1046|166|1056|113|1692|1268|13,6|48,9|0,7578| 10/03/2004|19.00.00|2|1292|112|9,4|955|103|1174|92|1559|972|13,3|47,7|0,7255| 10/03/2004|20.00.00|2,2|1402|88|9,0|939|131|1140|114|1555|1074|11,9|54,0|0,7502| 10/03/2004|21.00.00|2,2|1376|80|9,2|948|172|1092|122|1584|1203|11,0|60,0|0,7867| 10/03/2004|22.00.00|1,6|1272|51|6,5|836|131|1205|116|1490|1110|11,2|59,6|0,7888|
Maggiori informazioni su dati di qualità dell'aria Set e l'apprendimento automatico UCI Repository sono availabel in Riferimenti sezione.
Per semplificare la preparazione dei dati, una versione di SQL del set di dati sulla qualità dell'aria è stato preparato ed è disponibile come AirQualityUCI.sql .
L'istruzione per creare la tabella è:
CREATE TABLE AirQualityUCI (
Date DATE,
Time TIME,
CO REAL,
PT08S1 INT,
NMHC REAL,
C6H6 REAL,
PT08S2 INT,
NOx REAL,
PT08S3 INT,
NO2 REAL,
PT08S4 INT,
PT08S5 INT,
T REAL,
RH REAL,
AH REAL
);
I comandi completi per creare la tabella nel database e popolare i dati sono:
curl -s -OL https://github.com/tensorflow/io/raw/master/docs/tutorials/postgresql/AirQualityUCI.sql
PGPASSWORD=$TFIO_DEMO_DATABASE_PASS psql -q -h $TFIO_DEMO_DATABASE_HOST -p $TFIO_DEMO_DATABASE_PORT -U $TFIO_DEMO_DATABASE_USER -d $TFIO_DEMO_DATABASE_NAME -f AirQualityUCI.sql
Crea set di dati dal server PostgreSQL e usalo in TensorFlow
Creare un server set di dati da PostgreSQL è facile come chiamare tfio.experimental.IODataset.from_sql
con query
e endpoint
argomenti. L' query
è la query SQL per selezionare le colonne nelle tabelle ed il endpoint
argomento è l'indirizzo e il nome del database:
import os
import tensorflow_io as tfio
endpoint="postgresql://{}:{}@{}?port={}&dbname={}".format(
os.environ['TFIO_DEMO_DATABASE_USER'],
os.environ['TFIO_DEMO_DATABASE_PASS'],
os.environ['TFIO_DEMO_DATABASE_HOST'],
os.environ['TFIO_DEMO_DATABASE_PORT'],
os.environ['TFIO_DEMO_DATABASE_NAME'],
)
dataset = tfio.experimental.IODataset.from_sql(
query="SELECT co, pt08s1 FROM AirQualityUCI;",
endpoint=endpoint)
print(dataset.element_spec)
{'co': TensorSpec(shape=(), dtype=tf.float32, name=None), 'pt08s1': TensorSpec(shape=(), dtype=tf.int32, name=None)}
Come si può vedere dalla uscita di dataset.element_spec
sopra, l'elemento del creato Dataset
è un oggetto dict pitone con i nomi delle colonne della tabella del database come chiavi. È abbastanza conveniente applicare ulteriori operazioni. Ad esempio, è possibile selezionare sia nox
e no2
campo del Dataset
, e calcolare la differenza:
dataset = tfio.experimental.IODataset.from_sql(
query="SELECT nox, no2 FROM AirQualityUCI;",
endpoint=endpoint)
dataset = dataset.map(lambda e: (e['nox'] - e['no2']))
# check only the first 20 record
dataset = dataset.take(20)
print("NOx - NO2:")
for difference in dataset:
print(difference.numpy())
NOx - NO2: 53.0 11.0 17.0 50.0 15.0 -7.0 -15.0 -14.0 -15.0 0.0 -13.0 -12.0 -14.0 16.0 62.0 28.0 14.0 3.0 9.0 34.0
Il creato Dataset
è pronto per essere passato a tf.keras
direttamente sia per scopi di addestramento o di inferenza ora.
Riferimenti
- Dua, D. e Graff, C. (2019). UCI Machine Learning Repository [ http://archive.ics.uci.edu/ml ]. Irvine, CA: University of California, School of Information and Computer Science.
- S. De Vito, E. Massera, M. Piga, L. Martinotto, G. Di Francia, Taratura sul campo di un naso elettronico per la stima del benzene in uno scenario di monitoraggio dell'inquinamento urbano, Sensori e attuatori B: Chimica, Volume 129, Issue 2, 22 febbraio 2008, pagine 750-757, ISSN 0925-4005