Lecture de la base de données PostgreSQL à partir de TensorFlow IO

Voir sur TensorFlow.org Exécuter dans Google Colab Voir la source sur GitHub Télécharger le cahier

Aperçu

Ce tutoriel montre comment créer tf.data.Dataset à partir d' un serveur de base de données PostgreSQL, de sorte que la création Dataset pourrait être passé à tf.keras à des fins de formation ou inférence.

Une base de données SQL est une source de données importante pour le data scientist. Comme l' un des plus populaires de la base de données SQL open source, PostgreSQL est largement utilisé dans les entreprises pour stocker des données Critial et transactionnels à travers le conseil d' administration. Création Dataset à partir d' un serveur de base de données PostgreSQL directement et passer le Dataset à tf.keras pour la formation ou l' inférence, pourrait simplifier considérablement le pipeline de données et de l' aide scientifique de données de se concentrer sur la construction de modèles d'apprentissage de la machine.

Configuration et utilisation

Installez les packages tensorflow-io requis et redémarrez l'exécution

try:
  %tensorflow_version 2.x
except Exception:
  pass

!pip install -q tensorflow-io

Installer et configurer PostgreSQL (facultatif)

Afin de démontrer l'utilisation sur Google Colab, vous installerez le serveur PostgreSQL. Le mot de passe et une base de données vide sont également nécessaires.

Si vous n'exécutez pas ce bloc-notes sur Google Colab, ou si vous préférez utiliser une base de données existante, veuillez ignorer la configuration suivante et passer à la section suivante.

# Install postgresql server
sudo apt-get -y -qq update
sudo apt-get -y -qq install postgresql
sudo service postgresql start

# Setup a password `postgres` for username `postgres`
sudo -u postgres psql -U postgres -c "ALTER USER postgres PASSWORD 'postgres';"

# Setup a database with name `tfio_demo` to be used
sudo -u postgres psql -U postgres -c 'DROP DATABASE IF EXISTS tfio_demo;'
sudo -u postgres psql -U postgres -c 'CREATE DATABASE tfio_demo;'
Preconfiguring packages ...
Selecting previously unselected package libpq5:amd64.
(Reading database ... 254633 files and directories currently installed.)
Preparing to unpack .../0-libpq5_10.15-0ubuntu0.18.04.1_amd64.deb ...
Unpacking libpq5:amd64 (10.15-0ubuntu0.18.04.1) ...
Selecting previously unselected package postgresql-client-common.
Preparing to unpack .../1-postgresql-client-common_190ubuntu0.1_all.deb ...
Unpacking postgresql-client-common (190ubuntu0.1) ...
Selecting previously unselected package postgresql-client-10.
Preparing to unpack .../2-postgresql-client-10_10.15-0ubuntu0.18.04.1_amd64.deb ...
Unpacking postgresql-client-10 (10.15-0ubuntu0.18.04.1) ...
Selecting previously unselected package ssl-cert.
Preparing to unpack .../3-ssl-cert_1.0.39_all.deb ...
Unpacking ssl-cert (1.0.39) ...
Selecting previously unselected package postgresql-common.
Preparing to unpack .../4-postgresql-common_190ubuntu0.1_all.deb ...
Adding 'diversion of /usr/bin/pg_config to /usr/bin/pg_config.libpq-dev by postgresql-common'
Unpacking postgresql-common (190ubuntu0.1) ...
Selecting previously unselected package postgresql-10.
Preparing to unpack .../5-postgresql-10_10.15-0ubuntu0.18.04.1_amd64.deb ...
Unpacking postgresql-10 (10.15-0ubuntu0.18.04.1) ...
Selecting previously unselected package postgresql.
Preparing to unpack .../6-postgresql_10+190ubuntu0.1_all.deb ...
Unpacking postgresql (10+190ubuntu0.1) ...
Selecting previously unselected package sysstat.
Preparing to unpack .../7-sysstat_11.6.1-1ubuntu0.1_amd64.deb ...
Unpacking sysstat (11.6.1-1ubuntu0.1) ...
Setting up sysstat (11.6.1-1ubuntu0.1) ...

Creating config file /etc/default/sysstat with new version
update-alternatives: using /usr/bin/sar.sysstat to provide /usr/bin/sar (sar) in auto mode
Created symlink /etc/systemd/system/multi-user.target.wants/sysstat.service → /lib/systemd/system/sysstat.service.
Setting up ssl-cert (1.0.39) ...
Setting up libpq5:amd64 (10.15-0ubuntu0.18.04.1) ...
Setting up postgresql-client-common (190ubuntu0.1) ...
Setting up postgresql-common (190ubuntu0.1) ...
Adding user postgres to group ssl-cert

Creating config file /etc/postgresql-common/createcluster.conf with new version
Building PostgreSQL dictionaries from installed myspell/hunspell packages...
Removing obsolete dictionary files:
Created symlink /etc/systemd/system/multi-user.target.wants/postgresql.service → /lib/systemd/system/postgresql.service.
Setting up postgresql-client-10 (10.15-0ubuntu0.18.04.1) ...
update-alternatives: using /usr/share/postgresql/10/man/man1/psql.1.gz to provide /usr/share/man/man1/psql.1.gz (psql.1.gz) in auto mode
Setting up postgresql-10 (10.15-0ubuntu0.18.04.1) ...
Creating new PostgreSQL cluster 10/main ...
/usr/lib/postgresql/10/bin/initdb -D /var/lib/postgresql/10/main --auth-local peer --auth-host md5
The files belonging to this database system will be owned by user "postgres".
This user must also own the server process.

The database cluster will be initialized with locale "C.UTF-8".
The default database encoding has accordingly been set to "UTF8".
The default text search configuration will be set to "english".

Data page checksums are disabled.

fixing permissions on existing directory /var/lib/postgresql/10/main ... ok
creating subdirectories ... ok
selecting default max_connections ... 100
selecting default shared_buffers ... 128MB
selecting default timezone ... Etc/UTC
selecting dynamic shared memory implementation ... posix
creating configuration files ... ok
running bootstrap script ... ok
performing post-bootstrap initialization ... ok
syncing data to disk ... ok

Success. You can now start the database server using:

    /usr/lib/postgresql/10/bin/pg_ctl -D /var/lib/postgresql/10/main -l logfile start

Ver Cluster Port Status Owner    Data directory              Log file
10  main    5432 down   postgres /var/lib/postgresql/10/main /var/log/postgresql/postgresql-10-main.log
update-alternatives: using /usr/share/postgresql/10/man/man1/postmaster.1.gz to provide /usr/share/man/man1/postmaster.1.gz (postmaster.1.gz) in auto mode
Setting up postgresql (10+190ubuntu0.1) ...
Processing triggers for man-db (2.8.3-2ubuntu0.1) ...
Processing triggers for ureadahead (0.100.0-21) ...
Processing triggers for libc-bin (2.27-3ubuntu1.2) ...
Processing triggers for systemd (237-3ubuntu10.38) ...
ALTER ROLE
NOTICE:  database "tfio_demo" does not exist, skipping
DROP DATABASE
CREATE DATABASE

Configurer les variables environnementales nécessaires

Les variables d'environnement suivantes sont basées sur la configuration de PostgreSQL dans la dernière section. Si vous avez une configuration différente ou si vous utilisez une base de données existante, elles doivent être modifiées en conséquence :

%env TFIO_DEMO_DATABASE_NAME=tfio_demo
%env TFIO_DEMO_DATABASE_HOST=localhost
%env TFIO_DEMO_DATABASE_PORT=5432
%env TFIO_DEMO_DATABASE_USER=postgres
%env TFIO_DEMO_DATABASE_PASS=postgres
env: TFIO_DEMO_DATABASE_NAME=tfio_demo
env: TFIO_DEMO_DATABASE_HOST=localhost
env: TFIO_DEMO_DATABASE_PORT=5432
env: TFIO_DEMO_DATABASE_USER=postgres
env: TFIO_DEMO_DATABASE_PASS=postgres

Préparer les données dans le serveur PostgreSQL

À des fins de démonstration, ce didacticiel créera une base de données et remplira la base de données avec des données. Les données utilisées dans ce tutoriel est de qualité de l' air jeu de données , disponible à partir de l' UCI machine référentiel d' apprentissage .

Vous trouverez ci-dessous un aperçu d'un sous-ensemble de l'ensemble de données sur la qualité de l'air :

Date|Heure|CO(GT)|PT08.S1(CO)|NMHC(GT)|C6H6(GT)|PT08.S2(NMHC)|NOx(GT)|PT08.S3(NOx)|NO2(GT)| PT08.S4(NO2)|PT08.S5(O3)|T|RH|AH| ----|----|------|-----------|-------|--------|--- ----------|----|----------|------|------------|-- ---------|-|--|--| 10/03/2004|18.00.00|2,6|1360|150|11,9|1046|166|1056|113|1692|1268|13,6|48,9|0,7578| 10/03/2004|19.00.00|2|1292|112|9,4|955|103|1174|92|1559|972|13,3|47,7|0,7255| 10/03/2004|20.00.00|2,2|1402|88|9,0|939|131|1140|114|1555|1074|11,9|54,0|0.7502| 10/03/2004|21.00.00|2,2|1376|80|9,2|948|172|1092|122|1584|1203|11,0|60,0|0,7867| 10/03/2004|22.00.00|1,6|1272|51|6,5|836|131|1205|116|1490|1110|11,2|59,6|0,7888|

Plus d' informations sur la qualité de l' air et de l' ensemble de données UCI Machine Learning Repository sont availabel dans Références section.

Pour simplifier la préparation des données, une version sql de l'ensemble de données qualité de l' air a été préparé et est disponible en AirQualityUCI.sql .

L'instruction pour créer la table est :

CREATE TABLE AirQualityUCI (
  Date DATE,
  Time TIME,
  CO REAL,
  PT08S1 INT,
  NMHC REAL,
  C6H6 REAL,
  PT08S2 INT,
  NOx REAL,
  PT08S3 INT,
  NO2 REAL,
  PT08S4 INT,
  PT08S5 INT,
  T REAL,
  RH REAL,
  AH REAL
);

Les commandes complètes pour créer la table dans la base de données et remplir les données sont :

curl -s -OL https://github.com/tensorflow/io/raw/master/docs/tutorials/postgresql/AirQualityUCI.sql

PGPASSWORD=$TFIO_DEMO_DATABASE_PASS psql -q -h $TFIO_DEMO_DATABASE_HOST -p $TFIO_DEMO_DATABASE_PORT -U $TFIO_DEMO_DATABASE_USER -d $TFIO_DEMO_DATABASE_NAME -f AirQualityUCI.sql

Créer un ensemble de données à partir du serveur PostgreSQL et l'utiliser dans TensorFlow

Créer un serveur PostgreSQL à partir Dataset est aussi facile que d' appeler tfio.experimental.IODataset.from_sql avec la query et endpoint arguments. La query est la requête SQL pour les colonnes de sélection dans les tables et le endpoint argument est le nom d'adresse et base de données:

import os
import tensorflow_io as tfio

endpoint="postgresql://{}:{}@{}?port={}&dbname={}".format(
    os.environ['TFIO_DEMO_DATABASE_USER'],
    os.environ['TFIO_DEMO_DATABASE_PASS'],
    os.environ['TFIO_DEMO_DATABASE_HOST'],
    os.environ['TFIO_DEMO_DATABASE_PORT'],
    os.environ['TFIO_DEMO_DATABASE_NAME'],
)

dataset = tfio.experimental.IODataset.from_sql(
    query="SELECT co, pt08s1 FROM AirQualityUCI;",
    endpoint=endpoint)

print(dataset.element_spec)
{'co': TensorSpec(shape=(), dtype=tf.float32, name=None), 'pt08s1': TensorSpec(shape=(), dtype=tf.int32, name=None)}

Comme vous pouvez le voir sur la sortie de dataset.element_spec ci - dessus, l'élément du créé Dataset est un objet dict python avec des noms de colonne de la table de base de données clés. Il est assez pratique d'appliquer d'autres opérations. Par exemple, vous pouvez sélectionner les deux nox et no2 domaine de l' Dataset , et calculer la différence:

dataset = tfio.experimental.IODataset.from_sql(
    query="SELECT nox, no2 FROM AirQualityUCI;",
    endpoint=endpoint)

dataset = dataset.map(lambda e: (e['nox'] - e['no2']))

# check only the first 20 record
dataset = dataset.take(20)

print("NOx - NO2:")
for difference in dataset:
  print(difference.numpy())
NOx - NO2:
53.0
11.0
17.0
50.0
15.0
-7.0
-15.0
-14.0
-15.0
0.0
-13.0
-12.0
-14.0
16.0
62.0
28.0
14.0
3.0
9.0
34.0

La création Dataset est prêt à passer à tf.keras directement soit à des fins de formation ou inférence maintenant.

Les références

  • Dua, D. et Graff, C. (2019). UCI Machine Learning Repository [ http://archive.ics.uci.edu/ml ]. Irvine, Californie : Université de Californie, École d'information et d'informatique.
  • S. De Vito, E. Massera, M. Piga, L. Martinotto, G. Di Francia, On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario, Sensors and Actuators B: Chemical, Volume 129, Issue 2, 22 février 2008, pages 750-757, ISSN 0925-4005