Ver en TensorFlow.org | Ejecutar en Google Colab | Ver fuente en GitHub | Descargar cuaderno |
Descripción general
Este tutorial muestra cómo crear tf.data.Dataset
desde un servidor de base de datos PostgreSQL, por lo que el creado Dataset
se podría pasar a tf.keras
con fines de formación o de inferencia.
Una base de datos SQL es una fuente importante de datos para los científicos de datos. Como uno de la base de datos SQL más popular de código abierto, PostgreSQL es ampliamente utilizado en las empresas para almacenar datos critial y transaccionales a través del tablero. La creación Dataset
de un servidor de base de datos PostgreSQL directamente y pasar el Dataset
a tf.keras
para la formación o la inferencia, podría simplificar enormemente el científico de datos de tuberías de datos y ayuda a centrarse en la construcción de modelos de aprendizaje automático.
Configuración y uso
Instale los paquetes de tensorflow-io necesarios y reinicie el tiempo de ejecución
try:
%tensorflow_version 2.x
except Exception:
pass
!pip install -q tensorflow-io
Instalar y configurar PostgreSQL (opcional)
Para hacer una demostración del uso en Google Colab, instalará el servidor PostgreSQL. También se necesita la contraseña y una base de datos vacía.
Si no está ejecutando este cuaderno en Google Colab, o prefiere utilizar una base de datos existente, omita la siguiente configuración y continúe con la siguiente sección.
# Install postgresql server
sudo apt-get -y -qq update
sudo apt-get -y -qq install postgresql
sudo service postgresql start
# Setup a password `postgres` for username `postgres`
sudo -u postgres psql -U postgres -c "ALTER USER postgres PASSWORD 'postgres';"
# Setup a database with name `tfio_demo` to be used
sudo -u postgres psql -U postgres -c 'DROP DATABASE IF EXISTS tfio_demo;'
sudo -u postgres psql -U postgres -c 'CREATE DATABASE tfio_demo;'
Preconfiguring packages ... Selecting previously unselected package libpq5:amd64. (Reading database ... 254633 files and directories currently installed.) Preparing to unpack .../0-libpq5_10.15-0ubuntu0.18.04.1_amd64.deb ... Unpacking libpq5:amd64 (10.15-0ubuntu0.18.04.1) ... Selecting previously unselected package postgresql-client-common. Preparing to unpack .../1-postgresql-client-common_190ubuntu0.1_all.deb ... Unpacking postgresql-client-common (190ubuntu0.1) ... Selecting previously unselected package postgresql-client-10. Preparing to unpack .../2-postgresql-client-10_10.15-0ubuntu0.18.04.1_amd64.deb ... Unpacking postgresql-client-10 (10.15-0ubuntu0.18.04.1) ... Selecting previously unselected package ssl-cert. Preparing to unpack .../3-ssl-cert_1.0.39_all.deb ... Unpacking ssl-cert (1.0.39) ... Selecting previously unselected package postgresql-common. Preparing to unpack .../4-postgresql-common_190ubuntu0.1_all.deb ... Adding 'diversion of /usr/bin/pg_config to /usr/bin/pg_config.libpq-dev by postgresql-common' Unpacking postgresql-common (190ubuntu0.1) ... Selecting previously unselected package postgresql-10. Preparing to unpack .../5-postgresql-10_10.15-0ubuntu0.18.04.1_amd64.deb ... Unpacking postgresql-10 (10.15-0ubuntu0.18.04.1) ... Selecting previously unselected package postgresql. Preparing to unpack .../6-postgresql_10+190ubuntu0.1_all.deb ... Unpacking postgresql (10+190ubuntu0.1) ... Selecting previously unselected package sysstat. Preparing to unpack .../7-sysstat_11.6.1-1ubuntu0.1_amd64.deb ... Unpacking sysstat (11.6.1-1ubuntu0.1) ... Setting up sysstat (11.6.1-1ubuntu0.1) ... Creating config file /etc/default/sysstat with new version update-alternatives: using /usr/bin/sar.sysstat to provide /usr/bin/sar (sar) in auto mode Created symlink /etc/systemd/system/multi-user.target.wants/sysstat.service → /lib/systemd/system/sysstat.service. Setting up ssl-cert (1.0.39) ... Setting up libpq5:amd64 (10.15-0ubuntu0.18.04.1) ... Setting up postgresql-client-common (190ubuntu0.1) ... Setting up postgresql-common (190ubuntu0.1) ... Adding user postgres to group ssl-cert Creating config file /etc/postgresql-common/createcluster.conf with new version Building PostgreSQL dictionaries from installed myspell/hunspell packages... Removing obsolete dictionary files: Created symlink /etc/systemd/system/multi-user.target.wants/postgresql.service → /lib/systemd/system/postgresql.service. Setting up postgresql-client-10 (10.15-0ubuntu0.18.04.1) ... update-alternatives: using /usr/share/postgresql/10/man/man1/psql.1.gz to provide /usr/share/man/man1/psql.1.gz (psql.1.gz) in auto mode Setting up postgresql-10 (10.15-0ubuntu0.18.04.1) ... Creating new PostgreSQL cluster 10/main ... /usr/lib/postgresql/10/bin/initdb -D /var/lib/postgresql/10/main --auth-local peer --auth-host md5 The files belonging to this database system will be owned by user "postgres". This user must also own the server process. The database cluster will be initialized with locale "C.UTF-8". The default database encoding has accordingly been set to "UTF8". The default text search configuration will be set to "english". Data page checksums are disabled. fixing permissions on existing directory /var/lib/postgresql/10/main ... ok creating subdirectories ... ok selecting default max_connections ... 100 selecting default shared_buffers ... 128MB selecting default timezone ... Etc/UTC selecting dynamic shared memory implementation ... posix creating configuration files ... ok running bootstrap script ... ok performing post-bootstrap initialization ... ok syncing data to disk ... ok Success. You can now start the database server using: /usr/lib/postgresql/10/bin/pg_ctl -D /var/lib/postgresql/10/main -l logfile start Ver Cluster Port Status Owner Data directory Log file 10 main 5432 down postgres /var/lib/postgresql/10/main /var/log/postgresql/postgresql-10-main.log update-alternatives: using /usr/share/postgresql/10/man/man1/postmaster.1.gz to provide /usr/share/man/man1/postmaster.1.gz (postmaster.1.gz) in auto mode Setting up postgresql (10+190ubuntu0.1) ... Processing triggers for man-db (2.8.3-2ubuntu0.1) ... Processing triggers for ureadahead (0.100.0-21) ... Processing triggers for libc-bin (2.27-3ubuntu1.2) ... Processing triggers for systemd (237-3ubuntu10.38) ... ALTER ROLE NOTICE: database "tfio_demo" does not exist, skipping DROP DATABASE CREATE DATABASE
Configurar las variables ambientales necesarias
Las siguientes variables ambientales se basan en la configuración de PostgreSQL en la última sección. Si tiene una configuración diferente o está utilizando una base de datos existente, deben cambiarse en consecuencia:
%env TFIO_DEMO_DATABASE_NAME=tfio_demo
%env TFIO_DEMO_DATABASE_HOST=localhost
%env TFIO_DEMO_DATABASE_PORT=5432
%env TFIO_DEMO_DATABASE_USER=postgres
%env TFIO_DEMO_DATABASE_PASS=postgres
env: TFIO_DEMO_DATABASE_NAME=tfio_demo env: TFIO_DEMO_DATABASE_HOST=localhost env: TFIO_DEMO_DATABASE_PORT=5432 env: TFIO_DEMO_DATABASE_USER=postgres env: TFIO_DEMO_DATABASE_PASS=postgres
Preparar datos en el servidor PostgreSQL
Para fines de demostración, este tutorial creará una base de datos y la llenará con algunos datos. Los datos utilizados en este tutorial es de Calidad del Aire del conjunto de datos , disponible en la UCI Machine Learning Repositorio .
A continuación se muestra un adelanto de un subconjunto del conjunto de datos de calidad del aire:
Fecha | Hora | CO (GT) | PT08.S1 (CO) | NMHC (GT) | C6H6 (GT) | PT08.S2 (NMHC) | NOx (GT) | PT08.S3 (NOx) | NO2 (GT) | PT08.S4 (NO2) | PT08.S5 (O3) | T | RH | AH | ---- | ---- | ------ | ----------- | -------- | -------- | --- ---------- | ---- | ---------- | ------- | ------------ | - --------- | - | - | - | 10/03/2004 | 18.00.00 | 2,6 | 1360 | 150 | 11,9 | 1046 | 166 | 1056 | 113 | 1692 | 1268 | 13,6 | 48,9 | 0,7578 | 10/03/2004 | 19.00.00 | 2 | 1292 | 112 | 9,4 | 955 | 103 | 1174 | 92 | 1559 | 972 | 13,3 | 47,7 | 0,7255 | 03/10/2004 | 20.00.00 | 2,2 | 1402 | 88 | 9,0 | 939 | 131 | 1140 | 114 | 1555 | 1074 | 11,9 | 54,0 | 0,7502 | 03/10/2004 | 21.00.00 | 2,2 | 1376 | 80 | 9,2 | 948 | 172 | 1092 | 122 | 1584 | 1203 | 11,0 | 60,0 | 0,7867 | 03/10/2004 | 22.00.00 | 1,6 | 1272 | 51 | 6,5 | 836 | 131 | 1205 | 116 | 1490 | 1110 | 11,2 | 59,6 | 0,7888 |
Más información sobre la calidad del aire y del conjunto de datos de la UCI Machine Learning Repositorio es availabel en Referencias sección.
Para ayudar a simplificar la preparación de datos, una versión de SQL de la serie de datos de calidad del aire ha sido preparado y está disponible como AirQualityUCI.sql .
La declaración para crear la tabla es:
CREATE TABLE AirQualityUCI (
Date DATE,
Time TIME,
CO REAL,
PT08S1 INT,
NMHC REAL,
C6H6 REAL,
PT08S2 INT,
NOx REAL,
PT08S3 INT,
NO2 REAL,
PT08S4 INT,
PT08S5 INT,
T REAL,
RH REAL,
AH REAL
);
Los comandos completos para crear la tabla en la base de datos y completar los datos son:
curl -s -OL https://github.com/tensorflow/io/raw/master/docs/tutorials/postgresql/AirQualityUCI.sql
PGPASSWORD=$TFIO_DEMO_DATABASE_PASS psql -q -h $TFIO_DEMO_DATABASE_HOST -p $TFIO_DEMO_DATABASE_PORT -U $TFIO_DEMO_DATABASE_USER -d $TFIO_DEMO_DATABASE_NAME -f AirQualityUCI.sql
Cree un conjunto de datos desde el servidor PostgreSQL y utilícelo en TensorFlow
Crear un conjunto de datos del servidor de PostgreSQL es tan fácil como llamar tfio.experimental.IODataset.from_sql
con query
y endpoint
argumentos. La query
es la consulta SQL para seleccionar las columnas en las tablas y el endpoint
argumento es la dirección y la base de datos de nombre:
import os
import tensorflow_io as tfio
endpoint="postgresql://{}:{}@{}?port={}&dbname={}".format(
os.environ['TFIO_DEMO_DATABASE_USER'],
os.environ['TFIO_DEMO_DATABASE_PASS'],
os.environ['TFIO_DEMO_DATABASE_HOST'],
os.environ['TFIO_DEMO_DATABASE_PORT'],
os.environ['TFIO_DEMO_DATABASE_NAME'],
)
dataset = tfio.experimental.IODataset.from_sql(
query="SELECT co, pt08s1 FROM AirQualityUCI;",
endpoint=endpoint)
print(dataset.element_spec)
{'co': TensorSpec(shape=(), dtype=tf.float32, name=None), 'pt08s1': TensorSpec(shape=(), dtype=tf.int32, name=None)}
Como se podía ver desde la salida del dataset.element_spec
anteriormente, el elemento de lo creado Dataset
es un objeto dict pitón con nombres de columna de la tabla de base de datos como claves. Es muy conveniente aplicar más operaciones. Por ejemplo, puede seleccionar tanto nox
y no2
campo del Dataset
, y calcular la diferencia:
dataset = tfio.experimental.IODataset.from_sql(
query="SELECT nox, no2 FROM AirQualityUCI;",
endpoint=endpoint)
dataset = dataset.map(lambda e: (e['nox'] - e['no2']))
# check only the first 20 record
dataset = dataset.take(20)
print("NOx - NO2:")
for difference in dataset:
print(difference.numpy())
NOx - NO2: 53.0 11.0 17.0 50.0 15.0 -7.0 -15.0 -14.0 -15.0 0.0 -13.0 -12.0 -14.0 16.0 62.0 28.0 14.0 3.0 9.0 34.0
El creado Dataset
está listo para ser pasado a tf.keras
directamente, ya sea para fines de entrenamiento o de inferencia ahora.
Referencias
- Dua, D. y Graff, C. (2019). UCI Machine Learning repositorio [ http://archive.ics.uci.edu/ml ]. Irvine, CA: Facultad de Información y Ciencias de la Computación de la Universidad de California.
- S. De Vito, E. Massera, M. Piga, L. Martinotto, G. Di Francia, Calibración de campo de una nariz electrónica para la estimación de benceno en un escenario de monitoreo de contaminación urbana, Sensores y actuadores B: Química, Volumen 129, Edición 2, 22 de febrero de 2008, páginas 750-757, ISSN 0925-4005