Veja no TensorFlow.org | Executar no Google Colab | Ver fonte no GitHub | Baixar caderno |
Visão geral
Este tutorial se concentra na preparação tf.data.Dataset
s através da leitura de dados a partir de coleções MongoDB e usá-lo para treinar um tf.keras
modelo.
Pacotes de configuração
Isto usa tutoriais pymongo
como um pacote auxiliar para criar um novo banco de dados MongoDB e coleção para armazenar os dados.
Instale os pacotes tensorflow-io e mongodb (auxiliar) necessários
pip install -q tensorflow-io
pip install -q pymongo
Importar pacotes
import os
import time
from pprint import pprint
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental import preprocessing
import tensorflow_io as tfio
from pymongo import MongoClient
Validar importações de tf e tfio
print("tensorflow-io version: {}".format(tfio.__version__))
print("tensorflow version: {}".format(tf.__version__))
tensorflow-io version: 0.20.0 tensorflow version: 2.6.0
Baixe e configure a instância do MongoDB
Para fins de demonstração, a versão de código aberto do mongodb é usada.
sudo apt install -y mongodb >log
service mongodb start
* Starting database mongodb ...done. WARNING: apt does not have a stable CLI interface. Use with caution in scripts. debconf: unable to initialize frontend: Dialog debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 76, <> line 8.) debconf: falling back to frontend: Readline debconf: unable to initialize frontend: Readline debconf: (This frontend requires a controlling tty.) debconf: falling back to frontend: Teletype dpkg-preconfigure: unable to re-open stdin:
# Sleep for few seconds to let the instance start.
time.sleep(5)
Uma vez que a instância foi iniciada, grep para mongo
nos processos lista para confirmar a disponibilidade.
ps -ef | grep mongo
mongodb 580 1 13 17:38 ? 00:00:00 /usr/bin/mongod --config /etc/mongodb.conf root 612 610 0 17:38 ? 00:00:00 grep mongo
consulte o endpoint base para recuperar informações sobre o cluster.
client = MongoClient()
client.list_database_names() # ['admin', 'local']
['admin', 'local']
Explorar o conjunto de dados
Para o propósito deste tutorial, vamos baixar o Petfinder conjunto de dados e alimentar os dados no MongoDB manualmente. O objetivo desse problema de classificação é prever se o pet será adotado ou não.
dataset_url = 'http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip'
csv_file = 'datasets/petfinder-mini/petfinder-mini.csv'
tf.keras.utils.get_file('petfinder_mini.zip', dataset_url,
extract=True, cache_dir='.')
pf_df = pd.read_csv(csv_file)
Downloading data from http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip 1671168/1668792 [==============================] - 0s 0us/step 1679360/1668792 [==============================] - 0s 0us/step
pf_df.head()
Para o propósito do tutorial, modificações são feitas na coluna do rótulo. 0 indicará que o animal de estimação não foi adotado e 1 indicará que foi.
# In the original dataset "4" indicates the pet was not adopted.
pf_df['target'] = np.where(pf_df['AdoptionSpeed']==4, 0, 1)
# Drop un-used columns.
pf_df = pf_df.drop(columns=['AdoptionSpeed', 'Description'])
# Number of datapoints and columns
len(pf_df), len(pf_df.columns)
(11537, 14)
Dividir o conjunto de dados
train_df, test_df = train_test_split(pf_df, test_size=0.3, shuffle=True)
print("Number of training samples: ",len(train_df))
print("Number of testing sample: ",len(test_df))
Number of training samples: 8075 Number of testing sample: 3462
Armazene os dados de trem e teste nas coleções do mongo
URI = "mongodb://localhost:27017"
DATABASE = "tfiodb"
TRAIN_COLLECTION = "train"
TEST_COLLECTION = "test"
db = client[DATABASE]
if "train" not in db.list_collection_names():
db.create_collection(TRAIN_COLLECTION)
if "test" not in db.list_collection_names():
db.create_collection(TEST_COLLECTION)
def store_records(collection, records):
writer = tfio.experimental.mongodb.MongoDBWriter(
uri=URI, database=DATABASE, collection=collection
)
for record in records:
writer.write(record)
store_records(collection="train", records=train_df.to_dict("records"))
time.sleep(2)
store_records(collection="test", records=test_df.to_dict("records"))
Preparar conjuntos de dados tfio
Uma vez que os dados estão disponíveis no aglomerado, o mongodb.MongoDBIODataset
classe é utilizado para esta finalidade. Os herda da classe de tf.data.Dataset
e, portanto, expõe todas as funcionalidades úteis do tf.data.Dataset
fora da caixa.
Conjunto de dados de treinamento
train_ds = tfio.experimental.mongodb.MongoDBIODataset(
uri=URI, database=DATABASE, collection=TRAIN_COLLECTION
)
train_ds
Connection successful: mongodb://localhost:27017 WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/tensorflow/python/data/experimental/ops/counter.py:66: scan (from tensorflow.python.data.experimental.ops.scan_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.data.Dataset.scan(...) instead WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/tensorflow_io/python/experimental/mongodb_dataset_ops.py:114: take_while (from tensorflow.python.data.experimental.ops.take_while_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.data.Dataset.take_while(...) <MongoDBIODataset shapes: (), types: tf.string>
Cada item train_ds
é uma string que precisa ser decodificado em um JSON. Para fazer isso, você pode selecionar apenas um subconjunto das colunas especificando o TensorSpec
# Numeric features.
numerical_cols = ['PhotoAmt', 'Fee']
SPECS = {
"target": tf.TensorSpec(tf.TensorShape([]), tf.int64, name="target"),
}
for col in numerical_cols:
SPECS[col] = tf.TensorSpec(tf.TensorShape([]), tf.int32, name=col)
pprint(SPECS)
{'Fee': TensorSpec(shape=(), dtype=tf.int32, name='Fee'), 'PhotoAmt': TensorSpec(shape=(), dtype=tf.int32, name='PhotoAmt'), 'target': TensorSpec(shape=(), dtype=tf.int64, name='target')}
BATCH_SIZE=32
train_ds = train_ds.map(
lambda x: tfio.experimental.serialization.decode_json(x, specs=SPECS)
)
# Prepare a tuple of (features, label)
train_ds = train_ds.map(lambda v: (v, v.pop("target")))
train_ds = train_ds.batch(BATCH_SIZE)
train_ds
<BatchDataset shapes: ({PhotoAmt: (None,), Fee: (None,)}, (None,)), types: ({PhotoAmt: tf.int32, Fee: tf.int32}, tf.int64)>
Testando conjunto de dados
test_ds = tfio.experimental.mongodb.MongoDBIODataset(
uri=URI, database=DATABASE, collection=TEST_COLLECTION
)
test_ds = test_ds.map(
lambda x: tfio.experimental.serialization.decode_json(x, specs=SPECS)
)
# Prepare a tuple of (features, label)
test_ds = test_ds.map(lambda v: (v, v.pop("target")))
test_ds = test_ds.batch(BATCH_SIZE)
test_ds
Connection successful: mongodb://localhost:27017 <BatchDataset shapes: ({PhotoAmt: (None,), Fee: (None,)}, (None,)), types: ({PhotoAmt: tf.int32, Fee: tf.int32}, tf.int64)>
Definir as camadas de pré-processamento do keras
De acordo com o tutorial de dados estruturados , recomenda-se usar as Camadas Keras pré-processamento como eles são mais intuitivo, e pode ser facilmente integrado com os modelos. No entanto, o padrão feature_columns também pode ser usado.
Para uma melhor compreensão dos preprocessing_layers
na classificação dados estruturados, consulte o tutorial de dados estruturados
def get_normalization_layer(name, dataset):
# Create a Normalization layer for our feature.
normalizer = preprocessing.Normalization(axis=None)
# Prepare a Dataset that only yields our feature.
feature_ds = dataset.map(lambda x, y: x[name])
# Learn the statistics of the data.
normalizer.adapt(feature_ds)
return normalizer
all_inputs = []
encoded_features = []
for header in numerical_cols:
numeric_col = tf.keras.Input(shape=(1,), name=header)
normalization_layer = get_normalization_layer(header, train_ds)
encoded_numeric_col = normalization_layer(numeric_col)
all_inputs.append(numeric_col)
encoded_features.append(encoded_numeric_col)
Construir, compilar e treinar o modelo
# Set the parameters
OPTIMIZER="adam"
LOSS=tf.keras.losses.BinaryCrossentropy(from_logits=True)
METRICS=['accuracy']
EPOCHS=10
# Convert the feature columns into a tf.keras layer
all_features = tf.keras.layers.concatenate(encoded_features)
# design/build the model
x = tf.keras.layers.Dense(32, activation="relu")(all_features)
x = tf.keras.layers.Dropout(0.5)(x)
x = tf.keras.layers.Dense(64, activation="relu")(x)
x = tf.keras.layers.Dropout(0.5)(x)
output = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(all_inputs, output)
# compile the model
model.compile(optimizer=OPTIMIZER, loss=LOSS, metrics=METRICS)
# fit the model
model.fit(train_ds, epochs=EPOCHS)
Epoch 1/10 109/109 [==============================] - 1s 2ms/step - loss: 0.6261 - accuracy: 0.4711 Epoch 2/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5939 - accuracy: 0.6967 Epoch 3/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5900 - accuracy: 0.6993 Epoch 4/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5846 - accuracy: 0.7146 Epoch 5/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5824 - accuracy: 0.7178 Epoch 6/10 109/109 [==============================] - 0s 2ms/step - loss: 0.5778 - accuracy: 0.7233 Epoch 7/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5810 - accuracy: 0.7083 Epoch 8/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5791 - accuracy: 0.7149 Epoch 9/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5742 - accuracy: 0.7207 Epoch 10/10 109/109 [==============================] - 0s 2ms/step - loss: 0.5797 - accuracy: 0.7083 <keras.callbacks.History at 0x7f743229fe90>
Inferir sobre os dados de teste
res = model.evaluate(test_ds)
print("test loss, test acc:", res)
109/109 [==============================] - 0s 2ms/step - loss: 0.5696 - accuracy: 0.7383 test loss, test acc: [0.569588840007782, 0.7383015751838684]