Voir sur TensorFlow.org | Exécuter dans Google Colab | Voir la source sur GitHub | Télécharger le cahier |
Aperçu
Ce tutoriel se concentre sur la préparation tf.data.Dataset
s par la lecture des données de collections MongoDB et l' utiliser pour la formation d' un tf.keras
modèle.
Paquets d'installation
Ce tutoriel utilise pymongo
comme un paquet d'aide pour créer une nouvelle base de données MongoDB et de collecte pour stocker les données.
Installez les packages tensorflow-io et mongodb (helper) requis
pip install -q tensorflow-io
pip install -q pymongo
Importer des packages
import os
import time
from pprint import pprint
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental import preprocessing
import tensorflow_io as tfio
from pymongo import MongoClient
Valider les importations tf et tfio
print("tensorflow-io version: {}".format(tfio.__version__))
print("tensorflow version: {}".format(tf.__version__))
tensorflow-io version: 0.20.0 tensorflow version: 2.6.0
Téléchargez et configurez l'instance MongoDB
À des fins de démonstration, la version open source de mongodb est utilisée.
sudo apt install -y mongodb >log
service mongodb start
* Starting database mongodb ...done. WARNING: apt does not have a stable CLI interface. Use with caution in scripts. debconf: unable to initialize frontend: Dialog debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 76, <> line 8.) debconf: falling back to frontend: Readline debconf: unable to initialize frontend: Readline debconf: (This frontend requires a controlling tty.) debconf: falling back to frontend: Teletype dpkg-preconfigure: unable to re-open stdin:
# Sleep for few seconds to let the instance start.
time.sleep(5)
Une fois que l'instance a été lancé, grep pour mongo
dans les processus liste pour confirmer la disponibilité.
ps -ef | grep mongo
mongodb 580 1 13 17:38 ? 00:00:00 /usr/bin/mongod --config /etc/mongodb.conf root 612 610 0 17:38 ? 00:00:00 grep mongo
interrogez le point de terminaison de base pour récupérer des informations sur le cluster.
client = MongoClient()
client.list_database_names() # ['admin', 'local']
['admin', 'local']
Explorer l'ensemble de données
Aux fins de ce tutoriel, permet de télécharger le PetFinder ensemble de données et rentrer les données dans MongoDB manuellement. Le but de ce problème de classification est de prédire si l'animal sera adopté ou non.
dataset_url = 'http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip'
csv_file = 'datasets/petfinder-mini/petfinder-mini.csv'
tf.keras.utils.get_file('petfinder_mini.zip', dataset_url,
extract=True, cache_dir='.')
pf_df = pd.read_csv(csv_file)
Downloading data from http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip 1671168/1668792 [==============================] - 0s 0us/step 1679360/1668792 [==============================] - 0s 0us/step
pf_df.head()
Pour les besoins du didacticiel, des modifications sont apportées à la colonne d'étiquette. 0 indiquera que l'animal n'a pas été adopté et 1 indiquera qu'il l'a été.
# In the original dataset "4" indicates the pet was not adopted.
pf_df['target'] = np.where(pf_df['AdoptionSpeed']==4, 0, 1)
# Drop un-used columns.
pf_df = pf_df.drop(columns=['AdoptionSpeed', 'Description'])
# Number of datapoints and columns
len(pf_df), len(pf_df.columns)
(11537, 14)
Diviser l'ensemble de données
train_df, test_df = train_test_split(pf_df, test_size=0.3, shuffle=True)
print("Number of training samples: ",len(train_df))
print("Number of testing sample: ",len(test_df))
Number of training samples: 8075 Number of testing sample: 3462
Stockez les données de train et de test dans les collections mongo
URI = "mongodb://localhost:27017"
DATABASE = "tfiodb"
TRAIN_COLLECTION = "train"
TEST_COLLECTION = "test"
db = client[DATABASE]
if "train" not in db.list_collection_names():
db.create_collection(TRAIN_COLLECTION)
if "test" not in db.list_collection_names():
db.create_collection(TEST_COLLECTION)
def store_records(collection, records):
writer = tfio.experimental.mongodb.MongoDBWriter(
uri=URI, database=DATABASE, collection=collection
)
for record in records:
writer.write(record)
store_records(collection="train", records=train_df.to_dict("records"))
time.sleep(2)
store_records(collection="test", records=test_df.to_dict("records"))
Préparer les jeux de données tfio
Une fois que les données sont disponibles dans le cluster, la mongodb.MongoDBIODataset
classe est utilisée à cette fin. La classe hérite de tf.data.Dataset
et expose ainsi toutes les fonctionnalités utiles de tf.data.Dataset
hors de la boîte.
Ensemble de données d'entraînement
train_ds = tfio.experimental.mongodb.MongoDBIODataset(
uri=URI, database=DATABASE, collection=TRAIN_COLLECTION
)
train_ds
Connection successful: mongodb://localhost:27017 WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/tensorflow/python/data/experimental/ops/counter.py:66: scan (from tensorflow.python.data.experimental.ops.scan_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.data.Dataset.scan(...) instead WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/tensorflow_io/python/experimental/mongodb_dataset_ops.py:114: take_while (from tensorflow.python.data.experimental.ops.take_while_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.data.Dataset.take_while(...) <MongoDBIODataset shapes: (), types: tf.string>
Chaque élément de train_ds
est une chaîne qui doit être décodé en JSON. Pour ce faire, vous pouvez sélectionner un sous - ensemble des colonnes en spécifiant le TensorSpec
# Numeric features.
numerical_cols = ['PhotoAmt', 'Fee']
SPECS = {
"target": tf.TensorSpec(tf.TensorShape([]), tf.int64, name="target"),
}
for col in numerical_cols:
SPECS[col] = tf.TensorSpec(tf.TensorShape([]), tf.int32, name=col)
pprint(SPECS)
{'Fee': TensorSpec(shape=(), dtype=tf.int32, name='Fee'), 'PhotoAmt': TensorSpec(shape=(), dtype=tf.int32, name='PhotoAmt'), 'target': TensorSpec(shape=(), dtype=tf.int64, name='target')}
BATCH_SIZE=32
train_ds = train_ds.map(
lambda x: tfio.experimental.serialization.decode_json(x, specs=SPECS)
)
# Prepare a tuple of (features, label)
train_ds = train_ds.map(lambda v: (v, v.pop("target")))
train_ds = train_ds.batch(BATCH_SIZE)
train_ds
<BatchDataset shapes: ({PhotoAmt: (None,), Fee: (None,)}, (None,)), types: ({PhotoAmt: tf.int32, Fee: tf.int32}, tf.int64)>
Jeu de données de test
test_ds = tfio.experimental.mongodb.MongoDBIODataset(
uri=URI, database=DATABASE, collection=TEST_COLLECTION
)
test_ds = test_ds.map(
lambda x: tfio.experimental.serialization.decode_json(x, specs=SPECS)
)
# Prepare a tuple of (features, label)
test_ds = test_ds.map(lambda v: (v, v.pop("target")))
test_ds = test_ds.batch(BATCH_SIZE)
test_ds
Connection successful: mongodb://localhost:27017 <BatchDataset shapes: ({PhotoAmt: (None,), Fee: (None,)}, (None,)), types: ({PhotoAmt: tf.int32, Fee: tf.int32}, tf.int64)>
Définir les couches de prétraitement des keras
Selon le didacticiel de données structurées , il est recommandé d'utiliser les couches Keras Prétraitement car ils sont plus intuitive, et peut être facilement intégré aux modèles. Cependant, la norme feature_columns peuvent également être utilisés.
Pour une meilleure compréhension des preprocessing_layers
dans la classification des données structurées, s'il vous plaît se référer au tutoriel de données structurées
def get_normalization_layer(name, dataset):
# Create a Normalization layer for our feature.
normalizer = preprocessing.Normalization(axis=None)
# Prepare a Dataset that only yields our feature.
feature_ds = dataset.map(lambda x, y: x[name])
# Learn the statistics of the data.
normalizer.adapt(feature_ds)
return normalizer
all_inputs = []
encoded_features = []
for header in numerical_cols:
numeric_col = tf.keras.Input(shape=(1,), name=header)
normalization_layer = get_normalization_layer(header, train_ds)
encoded_numeric_col = normalization_layer(numeric_col)
all_inputs.append(numeric_col)
encoded_features.append(encoded_numeric_col)
Construire, compiler et entraîner le modèle
# Set the parameters
OPTIMIZER="adam"
LOSS=tf.keras.losses.BinaryCrossentropy(from_logits=True)
METRICS=['accuracy']
EPOCHS=10
# Convert the feature columns into a tf.keras layer
all_features = tf.keras.layers.concatenate(encoded_features)
# design/build the model
x = tf.keras.layers.Dense(32, activation="relu")(all_features)
x = tf.keras.layers.Dropout(0.5)(x)
x = tf.keras.layers.Dense(64, activation="relu")(x)
x = tf.keras.layers.Dropout(0.5)(x)
output = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(all_inputs, output)
# compile the model
model.compile(optimizer=OPTIMIZER, loss=LOSS, metrics=METRICS)
# fit the model
model.fit(train_ds, epochs=EPOCHS)
Epoch 1/10 109/109 [==============================] - 1s 2ms/step - loss: 0.6261 - accuracy: 0.4711 Epoch 2/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5939 - accuracy: 0.6967 Epoch 3/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5900 - accuracy: 0.6993 Epoch 4/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5846 - accuracy: 0.7146 Epoch 5/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5824 - accuracy: 0.7178 Epoch 6/10 109/109 [==============================] - 0s 2ms/step - loss: 0.5778 - accuracy: 0.7233 Epoch 7/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5810 - accuracy: 0.7083 Epoch 8/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5791 - accuracy: 0.7149 Epoch 9/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5742 - accuracy: 0.7207 Epoch 10/10 109/109 [==============================] - 0s 2ms/step - loss: 0.5797 - accuracy: 0.7083 <keras.callbacks.History at 0x7f743229fe90>
Déduire sur les données de test
res = model.evaluate(test_ds)
print("test loss, test acc:", res)
109/109 [==============================] - 0s 2ms/step - loss: 0.5696 - accuracy: 0.7383 test loss, test acc: [0.569588840007782, 0.7383015751838684]