Voir sur TensorFlow.org | Exécuter dans Google Colab | Voir la source sur GitHub | Télécharger le cahier |
Aperçu
Ce tutoriel se concentre sur le streaming de données à partir d' un Kafka cluster en tf.data.Dataset
qui est ensuite utilisé conjointement avec tf.keras
pour la formation et l' inférence.
Kafka est principalement une plate-forme de diffusion d'événements distribuée qui fournit des données de diffusion en continu évolutives et tolérantes aux pannes sur des pipelines de données. Il s'agit d'un composant technique essentiel d'une pléthore de grandes entreprises où la livraison de données critiques est une exigence principale.
Installer
Installez les packages tensorflow-io et kafka requis
pip install tensorflow-io
pip install kafka-python
Importer des packages
import os
from datetime import datetime
import time
import threading
import json
from kafka import KafkaProducer
from kafka.errors import KafkaError
from sklearn.model_selection import train_test_split
import pandas as pd
import tensorflow as tf
import tensorflow_io as tfio
Valider les importations tf et tfio
print("tensorflow-io version: {}".format(tfio.__version__))
print("tensorflow version: {}".format(tf.__version__))
tensorflow-io version: 0.23.1 tensorflow version: 2.8.0-rc0
Téléchargez et configurez les instances Kafka et Zookeeper
À des fins de démonstration, les instances suivantes sont configurées localement :
- Kafka (Courtiers : 127.0.0.1 : 9092)
- Zookeeper (Noeud : 127.0.0.1:2181)
curl -sSOL https://downloads.apache.org/kafka/2.7.2/kafka_2.13-2.7.2.tgz
tar -xzf kafka_2.13-2.7.2.tgz
Utiliser les configurations par défaut (fournies par Apache Kafka) pour faire tourner les instances.
./kafka_2.13-2.7.2/bin/zookeeper-server-start.sh -daemon ./kafka_2.13-2.7.2/config/zookeeper.properties
./kafka_2.13-2.7.2/bin/kafka-server-start.sh -daemon ./kafka_2.13-2.7.2/config/server.properties
echo "Waiting for 10 secs until kafka and zookeeper services are up and running"
sleep 10
Waiting for 10 secs until kafka and zookeeper services are up and running
Une fois que les instances sont démarrés en tant que processus démon, grep pour kafka
dans la liste des processus. Les deux processus Java correspondent aux instances de zookeeper et de kafka.
ps -ef | grep kafka
kbuilder 27856 20044 4 20:28 ? 00:00:00 python /tmpfs/src/gfile/executor.py --input_notebook=/tmpfs/src/temp/docs/tutorials/kafka.ipynb --timeout=15000 kbuilder 28271 1 16 20:28 ? 00:00:01 java -Xmx512M -Xms512M -server -XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35 -XX:+ExplicitGCInvokesConcurrent -XX:MaxInlineLevel=15 -Djava.awt.headless=true -Xlog:gc*:file=/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../logs/zookeeper-gc.log:time,tags:filecount=10,filesize=100M -Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false -Dkafka.logs.dir=/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../logs -Dlog4j.configuration=file:./kafka_2.13-2.7.2/bin/../config/log4j.properties -cp /tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/activation-1.1.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/aopalliance-repackaged-2.6.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/argparse4j-0.7.0.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/audience-annotations-0.5.0.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/commons-cli-1.4.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/commons-lang3-3.8.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/connect-api-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/connect-basic-auth-extension-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/connect-file-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/connect-json-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/connect-mirror-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/connect-mirror-client-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/connect-runtime-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/connect-transforms-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/hk2-api-2.6.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/hk2-locator-2.6.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/hk2-utils-2.6.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-annotations-2.10.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-core-2.10.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-databind-2.10.5.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-dataformat-csv-2.10.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-datatype-jdk8-2.10.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-jaxrs-base-2.10.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-jaxrs-json-provider-2.10.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-module-jaxb-annotations-2.10.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-module-paranamer-2.10.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-module-scala_2.13-2.10.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jakarta.activation-api-1.2.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jakarta.annotation-api-1.3.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jakarta.inject-2.6.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jakarta.validation-api-2.0.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jakarta.ws.rs-api-2.1.6.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jakarta.xml.bind-api-2.3.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/javassist-3.25.0-GA.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/javassist-3.26.0-GA.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/javax.servlet-api-3.1.0.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/javax.ws.rs-api-2.1.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jaxb-api-2.3.0.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jersey-client-2.34.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jersey-common-2.34.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jersey-container-servlet-2.34.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jersey-container-servlet-core-2.34.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jersey-hk2-2.34.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jersey-server-2.34.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-client-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-continuation-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-http-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-io-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-security-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-server-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-servlet-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-servlets-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-util-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-util-ajax-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jopt-simple-5.0.4.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka-clients-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka-log4j-appender-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka-raft-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka-streams-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka-streams-examples-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka-streams-scala_2.13-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka-streams-test-utils-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka-tools-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka_2.13-2.7.2-sources.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka_2.13-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/log4j-1.2.17.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/lz4-java-1.7.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/maven-artifact-3.8.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/metrics-core-2.2.0.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/netty-buffer-4.1.59.Final.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/netty-codec-4.1.59.Final.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/netty-common-4.1.59.Final.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/netty-handler-4.1.59.Final.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/netty-resolver-4.1.59.Final.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/netty-transport-4.1.59.Final.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/netty-transport-native-epoll-4.1.59.Final.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/netty-transport-native-unix-common-4.1.59.Final.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/osgi-resource-locator-1.0.3.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/paranamer-2.8.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/plexus-utils-3.2.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/reflections-0.9.12.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/rocksdbjni-5.18.4.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/scala-collection-compat_2.13-2.2.0.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/scala-java8-compat_2.13-0.9.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/scala-library-2.13.3.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/scala-logging_2.13-3.9.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/scala-reflect-2.13.3.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/slf4j-api-1.7.30.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/slf4j-log4j12-1.7.30.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/snappy-java-1.1.7.7.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/zookeeper-3.5.9.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/zookeeper-jute-3.5.9.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/zstd-jni-1.4.5-6.jar org.apache.zookeeper.server.quorum.QuorumPeerMain ./kafka_2.13-2.7.2/config/zookeeper.properties kbuilder 28635 1 57 20:28 ? 00:00:05 java -Xmx1G -Xms1G -server -XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35 -XX:+ExplicitGCInvokesConcurrent -XX:MaxInlineLevel=15 -Djava.awt.headless=true -Xlog:gc*:file=/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../logs/kafkaServer-gc.log:time,tags:filecount=10,filesize=100M -Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false -Dkafka.logs.dir=/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../logs -Dlog4j.configuration=file:./kafka_2.13-2.7.2/bin/../config/log4j.properties -cp /tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/activation-1.1.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/aopalliance-repackaged-2.6.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/argparse4j-0.7.0.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/audience-annotations-0.5.0.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/commons-cli-1.4.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/commons-lang3-3.8.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/connect-api-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/connect-basic-auth-extension-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/connect-file-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/connect-json-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/connect-mirror-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/connect-mirror-client-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/connect-runtime-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/connect-transforms-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/hk2-api-2.6.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/hk2-locator-2.6.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/hk2-utils-2.6.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-annotations-2.10.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-core-2.10.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-databind-2.10.5.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-dataformat-csv-2.10.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-datatype-jdk8-2.10.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-jaxrs-base-2.10.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-jaxrs-json-provider-2.10.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-module-jaxb-annotations-2.10.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-module-paranamer-2.10.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jackson-module-scala_2.13-2.10.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jakarta.activation-api-1.2.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jakarta.annotation-api-1.3.5.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jakarta.inject-2.6.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jakarta.validation-api-2.0.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jakarta.ws.rs-api-2.1.6.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jakarta.xml.bind-api-2.3.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/javassist-3.25.0-GA.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/javassist-3.26.0-GA.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/javax.servlet-api-3.1.0.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/javax.ws.rs-api-2.1.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jaxb-api-2.3.0.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jersey-client-2.34.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jersey-common-2.34.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jersey-container-servlet-2.34.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jersey-container-servlet-core-2.34.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jersey-hk2-2.34.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jersey-server-2.34.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-client-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-continuation-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-http-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-io-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-security-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-server-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-servlet-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-servlets-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-util-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jetty-util-ajax-9.4.43.v20210629.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/jopt-simple-5.0.4.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka-clients-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka-log4j-appender-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka-raft-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka-streams-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka-streams-examples-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka-streams-scala_2.13-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka-streams-test-utils-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka-tools-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka_2.13-2.7.2-sources.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/kafka_2.13-2.7.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/log4j-1.2.17.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/lz4-java-1.7.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/maven-artifact-3.8.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/metrics-core-2.2.0.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/netty-buffer-4.1.59.Final.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/netty-codec-4.1.59.Final.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/netty-common-4.1.59.Final.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/netty-handler-4.1.59.Final.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/netty-resolver-4.1.59.Final.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/netty-transport-4.1.59.Final.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/netty-transport-native-epoll-4.1.59.Final.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/netty-transport-native-unix-common-4.1.59.Final.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/osgi-resource-locator-1.0.3.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/paranamer-2.8.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/plexus-utils-3.2.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/reflections-0.9.12.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/rocksdbjni-5.18.4.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/scala-collection-compat_2.13-2.2.0.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/scala-java8-compat_2.13-0.9.1.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/scala-library-2.13.3.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/scala-logging_2.13-3.9.2.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/scala-reflect-2.13.3.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/slf4j-api-1.7.30.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/slf4j-log4j12-1.7.30.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/snappy-java-1.1.7.7.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/zookeeper-3.5.9.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/zookeeper-jute-3.5.9.jar:/tmpfs/src/temp/docs/tutorials/kafka_2.13-2.7.2/bin/../libs/zstd-jni-1.4.5-6.jar kafka.Kafka ./kafka_2.13-2.7.2/config/server.properties kbuilder 28821 27860 0 20:28 pts/0 00:00:00 /bin/bash -c ps -ef | grep kafka kbuilder 28823 28821 0 20:28 pts/0 00:00:00 grep kafka
Créez les sujets kafka avec les spécifications suivantes :
- susy-train : partitions=1, facteur de réplication=1
- susy-test : partitions=2, facteur de réplication=1
./kafka_2.13-2.7.2/bin/kafka-topics.sh --create --bootstrap-server 127.0.0.1:9092 --replication-factor 1 --partitions 1 --topic susy-train
./kafka_2.13-2.7.2/bin/kafka-topics.sh --create --bootstrap-server 127.0.0.1:9092 --replication-factor 1 --partitions 2 --topic susy-test
Created topic susy-train. Created topic susy-test.
Décrire le sujet pour plus de détails sur la configuration
./kafka_2.13-2.7.2/bin/kafka-topics.sh --describe --bootstrap-server 127.0.0.1:9092 --topic susy-train
./kafka_2.13-2.7.2/bin/kafka-topics.sh --describe --bootstrap-server 127.0.0.1:9092 --topic susy-test
Topic: susy-train PartitionCount: 1 ReplicationFactor: 1 Configs: segment.bytes=1073741824 Topic: susy-train Partition: 0 Leader: 0 Replicas: 0 Isr: 0 Topic: susy-test PartitionCount: 2 ReplicationFactor: 1 Configs: segment.bytes=1073741824 Topic: susy-test Partition: 0 Leader: 0 Replicas: 0 Isr: 0 Topic: susy-test Partition: 1 Leader: 0 Replicas: 0 Isr: 0
Le facteur de réplication 1 indique que les données ne sont pas répliquées. Cela est dû à la présence d'un seul courtier dans notre configuration kafka. Dans les systèmes de production, le nombre de serveurs d'amorçage peut être de l'ordre de 100 nœuds. C'est là qu'intervient la tolérance aux pannes à l'aide de la réplication.
S'il vous plaît se référer aux documents pour plus de détails.
Ensemble de données SUSY
Kafka étant une plate-forme de streaming d'événements, permet d'y écrire des données provenant de diverses sources. Par exemple:
- Journaux de trafic Web
- Mesures astronomiques
- Données des capteurs IoT
- Avis sur les produits et bien d'autres.
Aux fins de ce tutoriel, permet de télécharger le SUSY ensemble de données et rentrer les données dans kafka manuellement. Le but de ce problème de classification est de faire la distinction entre un processus de signal qui produit des particules supersymétriques et un processus de fond qui n'en produit pas.
curl -sSOL https://archive.ics.uci.edu/ml/machine-learning-databases/00279/SUSY.csv.gz
Explorer l'ensemble de données
La première colonne est l'étiquette de classe (1 pour le signal, 0 pour l'arrière-plan), suivie des 18 caractéristiques (8 caractéristiques de bas niveau puis 10 caractéristiques de haut niveau). Les 8 premières caractéristiques sont des propriétés cinématiques mesurées par les détecteurs de particules de l'accélérateur. Les 10 dernières fonctionnalités sont des fonctions des 8 premières fonctionnalités. Ce sont des caractéristiques de haut niveau dérivées par les physiciens pour aider à faire la distinction entre les deux classes.
COLUMNS = [
# labels
'class',
# low-level features
'lepton_1_pT',
'lepton_1_eta',
'lepton_1_phi',
'lepton_2_pT',
'lepton_2_eta',
'lepton_2_phi',
'missing_energy_magnitude',
'missing_energy_phi',
# high-level derived features
'MET_rel',
'axial_MET',
'M_R',
'M_TR_2',
'R',
'MT2',
'S_R',
'M_Delta_R',
'dPhi_r_b',
'cos(theta_r1)'
]
L'ensemble de données complet se compose de 5 millions de lignes. Cependant, pour les besoins de ce didacticiel, ne considérons qu'une fraction de l'ensemble de données (100 000 lignes) afin de passer moins de temps à déplacer les données et plus de temps à comprendre les fonctionnalités de l'API.
susy_iterator = pd.read_csv('SUSY.csv.gz', header=None, names=COLUMNS, chunksize=100000)
susy_df = next(susy_iterator)
susy_df.head()
# Number of datapoints and columns
len(susy_df), len(susy_df.columns)
(100000, 19)
# Number of datapoints belonging to each class (0: background noise, 1: signal)
len(susy_df[susy_df["class"]==0]), len(susy_df[susy_df["class"]==1])
(54025, 45975)
Diviser l'ensemble de données
train_df, test_df = train_test_split(susy_df, test_size=0.4, shuffle=True)
print("Number of training samples: ",len(train_df))
print("Number of testing sample: ",len(test_df))
x_train_df = train_df.drop(["class"], axis=1)
y_train_df = train_df["class"]
x_test_df = test_df.drop(["class"], axis=1)
y_test_df = test_df["class"]
# The labels are set as the kafka message keys so as to store data
# in multiple-partitions. Thus, enabling efficient data retrieval
# using the consumer groups.
x_train = list(filter(None, x_train_df.to_csv(index=False).split("\n")[1:]))
y_train = list(filter(None, y_train_df.to_csv(index=False).split("\n")[1:]))
x_test = list(filter(None, x_test_df.to_csv(index=False).split("\n")[1:]))
y_test = list(filter(None, y_test_df.to_csv(index=False).split("\n")[1:]))
Number of training samples: 60000 Number of testing sample: 40000
NUM_COLUMNS = len(x_train_df.columns)
len(x_train), len(y_train), len(x_test), len(y_test)
(60000, 60000, 40000, 40000)
Stockez le train et testez les données dans kafka
Le stockage des données dans kafka simule un environnement pour la récupération continue de données à distance à des fins de formation et d'inférence.
def error_callback(exc):
raise Exception('Error while sendig data to kafka: {0}'.format(str(exc)))
def write_to_kafka(topic_name, items):
count=0
producer = KafkaProducer(bootstrap_servers=['127.0.0.1:9092'])
for message, key in items:
producer.send(topic_name, key=key.encode('utf-8'), value=message.encode('utf-8')).add_errback(error_callback)
count+=1
producer.flush()
print("Wrote {0} messages into topic: {1}".format(count, topic_name))
write_to_kafka("susy-train", zip(x_train, y_train))
write_to_kafka("susy-test", zip(x_test, y_test))
Wrote 60000 messages into topic: susy-train Wrote 40000 messages into topic: susy-test
Définir le jeu de données du train tfio
La IODataset
classe est utilisé pour le streaming de données kafka en tensorflow. La classe hérite de tf.data.Dataset
et a donc toutes les fonctionnalités utiles de tf.data.Dataset
hors de la boîte.
def decode_kafka_item(item):
message = tf.io.decode_csv(item.message, [[0.0] for i in range(NUM_COLUMNS)])
key = tf.strings.to_number(item.key)
return (message, key)
BATCH_SIZE=64
SHUFFLE_BUFFER_SIZE=64
train_ds = tfio.IODataset.from_kafka('susy-train', partition=0, offset=0)
train_ds = train_ds.shuffle(buffer_size=SHUFFLE_BUFFER_SIZE)
train_ds = train_ds.map(decode_kafka_item)
train_ds = train_ds.batch(BATCH_SIZE)
2022-01-07 20:29:21.602817: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
Construire et entraîner le modèle
# Set the parameters
OPTIMIZER="adam"
LOSS=tf.keras.losses.BinaryCrossentropy(from_logits=True)
METRICS=['accuracy']
EPOCHS=10
# design/build the model
model = tf.keras.Sequential([
tf.keras.layers.Input(shape=(NUM_COLUMNS,)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(1, activation='sigmoid')
])
print(model.summary())
Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) (None, 128) 2432 dropout (Dropout) (None, 128) 0 dense_1 (Dense) (None, 256) 33024 dropout_1 (Dropout) (None, 256) 0 dense_2 (Dense) (None, 128) 32896 dropout_2 (Dropout) (None, 128) 0 dense_3 (Dense) (None, 1) 129 ================================================================= Total params: 68,481 Trainable params: 68,481 Non-trainable params: 0 _________________________________________________________________ None
# compile the model
model.compile(optimizer=OPTIMIZER, loss=LOSS, metrics=METRICS)
# fit the model
model.fit(train_ds, epochs=EPOCHS)
Epoch 1/10 /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: "`binary_crossentropy` received `from_logits=True`, but the `output` argument was produced by a sigmoid or softmax activation and thus does not represent logits. Was this intended?" return dispatch_target(*args, **kwargs) 938/938 [==============================] - 31s 33ms/step - loss: 0.4817 - accuracy: 0.7691 Epoch 2/10 938/938 [==============================] - 30s 32ms/step - loss: 0.4550 - accuracy: 0.7875 Epoch 3/10 938/938 [==============================] - 31s 32ms/step - loss: 0.4512 - accuracy: 0.7911 Epoch 4/10 938/938 [==============================] - 31s 32ms/step - loss: 0.4487 - accuracy: 0.7940 Epoch 5/10 938/938 [==============================] - 31s 32ms/step - loss: 0.4466 - accuracy: 0.7934 Epoch 6/10 938/938 [==============================] - 31s 32ms/step - loss: 0.4459 - accuracy: 0.7933 Epoch 7/10 938/938 [==============================] - 31s 32ms/step - loss: 0.4448 - accuracy: 0.7935 Epoch 8/10 938/938 [==============================] - 31s 32ms/step - loss: 0.4439 - accuracy: 0.7950 Epoch 9/10 938/938 [==============================] - 31s 32ms/step - loss: 0.4421 - accuracy: 0.7956 Epoch 10/10 938/938 [==============================] - 31s 32ms/step - loss: 0.4425 - accuracy: 0.7962 <keras.callbacks.History at 0x7fb364fd2a90>
Étant donné que seule une fraction de l'ensemble de données est utilisée, notre précision est limitée à environ 78 % pendant la phase d'entraînement. Cependant, n'hésitez pas à stocker des données supplémentaires dans kafka pour une meilleure performance du modèle. De plus, comme l'objectif était simplement de démontrer la fonctionnalité des ensembles de données tfio kafka, un réseau de neurones plus petit et moins compliqué a été utilisé. Cependant, on peut augmenter la complexité du modèle, modifier la stratégie d'apprentissage, régler les hyper-paramètres, etc. à des fins d'exploration. Pour une approche de base, s'il vous plaît se référer à cet article .
Déduire sur les données de test
Pour conclure sur les données de test en respectant la sémantique « exactement une seule fois » ainsi que la tolérance aux pannes, le streaming.KafkaGroupIODataset
peut être utilisé.
Définir le jeu de données de test tfio
Les stream_timeout
blocs de paramètres pour la durée donnée pour les nouveaux points de données soient aiguillées vers le sujet. Cela élimine le besoin de créer de nouveaux ensembles de données si les données sont diffusées dans le sujet de manière intermittente.
test_ds = tfio.experimental.streaming.KafkaGroupIODataset(
topics=["susy-test"],
group_id="testcg",
servers="127.0.0.1:9092",
stream_timeout=10000,
configuration=[
"session.timeout.ms=7000",
"max.poll.interval.ms=8000",
"auto.offset.reset=earliest"
],
)
def decode_kafka_test_item(raw_message, raw_key):
message = tf.io.decode_csv(raw_message, [[0.0] for i in range(NUM_COLUMNS)])
key = tf.strings.to_number(raw_key)
return (message, key)
test_ds = test_ds.map(decode_kafka_test_item)
test_ds = test_ds.batch(BATCH_SIZE)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_io/python/experimental/kafka_group_io_dataset_ops.py:188: take_while (from tensorflow.python.data.experimental.ops.take_while_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.data.Dataset.take_while(...)
Bien que cette classe puisse être utilisée à des fins de formation, certaines mises en garde doivent être prises en compte. Une fois que tous les messages sont lus à partir kafka et les derniers décalages sont commis à l' aide streaming.KafkaGroupIODataset
, le consommateur ne redémarre pas lire les messages depuis le début. Ainsi, pendant l'entraînement, il n'est possible de s'entraîner que pour une seule époque avec les données affluant en continu. Ce type de fonctionnalité a des cas d'utilisation limités pendant la phase d'entraînement où, une fois qu'un point de données a été consommé par le modèle, il n'est plus requis et peut être jeté.
Cependant, cette fonctionnalité brille lorsqu'il s'agit d'inférence robuste avec une sémantique exactement unique.
évaluer les performances sur les données de test
res = model.evaluate(test_ds)
print("test loss, test acc:", res)
34/Unknown - 0s 2ms/step - loss: 0.4434 - accuracy: 0.8194 2022-01-07 20:34:29.402707: E tensorflow_io/core/kernels/kafka_kernels.cc:774] REBALANCE: Local: Assign partitions 2022-01-07 20:34:29.406789: E tensorflow_io/core/kernels/kafka_kernels.cc:776] Retrieved committed offsets with status code: 0 625/625 [==============================] - 11s 17ms/step - loss: 0.4437 - accuracy: 0.7915 test loss, test acc: [0.4436523914337158, 0.7915250062942505] 2022-01-07 20:34:40.051954: E tensorflow_io/core/kernels/kafka_kernels.cc:1001] Local: Timed out
Étant donné que l'inférence est basée sur la sémantique « exactement une fois », l'évaluation sur l'ensemble de test ne peut être exécutée qu'une seule fois. Afin d'exécuter à nouveau l'inférence sur les données de test, un nouveau groupe de consommateurs doit être utilisé.
Suivre le décalage du décalage testcg
groupe de consommateurs
./kafka_2.13-2.7.2/bin/kafka-consumer-groups.sh --bootstrap-server 127.0.0.1:9092 --describe --group testcg
GROUP TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG CONSUMER-ID HOST CLIENT-ID testcg susy-test 0 21626 21626 0 rdkafka-534f63d0-b91e-4976-a3ca-832b6c91210e /10.142.0.103 rdkafka testcg susy-test 1 18374 18374 0 rdkafka-534f63d0-b91e-4976-a3ca-832b6c91210e /10.142.0.103 rdkafka
Une fois que les current-offset
matchs du log-end-offset
pour toutes les partitions, il indique que le consommateur (s) ont terminé la récupération de tous les messages du sujet kafka.
Apprentissage en ligne
Le paradigme de l'apprentissage automatique en ligne est un peu différent de la manière traditionnelle/conventionnelle de former des modèles d'apprentissage automatique. Dans le premier cas, le modèle continue d'apprendre/mettre à jour ses paramètres de manière incrémentielle dès que les nouveaux points de données sont disponibles et ce processus devrait se poursuivre indéfiniment. Ceci est à la différence des dernières approches où l'ensemble de données est fixe et le modèle itère dessus n
nombre de fois. Dans l'apprentissage en ligne, les données une fois consommées par le modèle peuvent ne plus être disponibles pour l'entraînement.
En utilisant le streaming.KafkaBatchIODataset
, il est désormais possible de former les modèles de cette façon. Continuons à utiliser notre ensemble de données SUSY pour démontrer cette fonctionnalité.
L'ensemble de données de formation tfio pour l'apprentissage en ligne
Le streaming.KafkaBatchIODataset
est similaire à la streaming.KafkaGroupIODataset
dans l' API de lui. De plus, il est recommandé d'utiliser le stream_timeout
paramètre pour configurer la durée pour laquelle l'ensemble de données bloque les nouveaux messages avant d'expirer. Dans l'exemple ci - dessous, l'ensemble de données est configuré avec un stream_timeout
de 10000
millisecondes. Cela implique qu'une fois tous les messages du sujet consommés, l'ensemble de données attendra 10 secondes supplémentaires avant d'expirer et de se déconnecter du cluster kafka. Si de nouveaux messages sont diffusés dans la rubrique avant l'expiration du délai, la consommation de données et l'apprentissage du modèle reprennent pour les points de données nouvellement consommés. Pour bloquer indéfiniment, réglez - le sur -1
.
online_train_ds = tfio.experimental.streaming.KafkaBatchIODataset(
topics=["susy-train"],
group_id="cgonline",
servers="127.0.0.1:9092",
stream_timeout=10000, # in milliseconds, to block indefinitely, set it to -1.
configuration=[
"session.timeout.ms=7000",
"max.poll.interval.ms=8000",
"auto.offset.reset=earliest"
],
)
Chaque élément que les online_train_ds
génère est un tf.data.Dataset
en soi. Ainsi, toutes les transformations standard peuvent être appliquées comme d'habitude.
def decode_kafka_online_item(raw_message, raw_key):
message = tf.io.decode_csv(raw_message, [[0.0] for i in range(NUM_COLUMNS)])
key = tf.strings.to_number(raw_key)
return (message, key)
for mini_ds in online_train_ds:
mini_ds = mini_ds.shuffle(buffer_size=32)
mini_ds = mini_ds.map(decode_kafka_online_item)
mini_ds = mini_ds.batch(32)
if len(mini_ds) > 0:
model.fit(mini_ds, epochs=3)
2022-01-07 20:34:42.024915: E tensorflow_io/core/kernels/kafka_kernels.cc:774] REBALANCE: Local: Assign partitions 2022-01-07 20:34:42.025797: E tensorflow_io/core/kernels/kafka_kernels.cc:776] Retrieved committed offsets with status code: 0 Epoch 1/3 313/313 [==============================] - 1s 2ms/step - loss: 0.4561 - accuracy: 0.7909 Epoch 2/3 313/313 [==============================] - 1s 2ms/step - loss: 0.4538 - accuracy: 0.7909 Epoch 3/3 313/313 [==============================] - 1s 2ms/step - loss: 0.4499 - accuracy: 0.7947 Epoch 1/3 313/313 [==============================] - 1s 2ms/step - loss: 0.4347 - accuracy: 0.8018 Epoch 2/3 313/313 [==============================] - 1s 2ms/step - loss: 0.4314 - accuracy: 0.8048 Epoch 3/3 313/313 [==============================] - 1s 2ms/step - loss: 0.4286 - accuracy: 0.8063 Epoch 1/3 313/313 [==============================] - 1s 2ms/step - loss: 0.4480 - accuracy: 0.7910 Epoch 2/3 313/313 [==============================] - 1s 2ms/step - loss: 0.4425 - accuracy: 0.7945 Epoch 3/3 313/313 [==============================] - 1s 2ms/step - loss: 0.4390 - accuracy: 0.7970 Epoch 1/3 313/313 [==============================] - 1s 2ms/step - loss: 0.4434 - accuracy: 0.7965 Epoch 2/3 313/313 [==============================] - 1s 2ms/step - loss: 0.4380 - accuracy: 0.7974 Epoch 3/3 313/313 [==============================] - 1s 2ms/step - loss: 0.4354 - accuracy: 0.7992 Epoch 1/3 313/313 [==============================] - 1s 2ms/step - loss: 0.4522 - accuracy: 0.7909 Epoch 2/3 313/313 [==============================] - 1s 2ms/step - loss: 0.4475 - accuracy: 0.7910 Epoch 3/3 313/313 [==============================] - 1s 2ms/step - loss: 0.4435 - accuracy: 0.7947 Epoch 1/3 313/313 [==============================] - 1s 2ms/step - loss: 0.4464 - accuracy: 0.7906 Epoch 2/3 313/313 [==============================] - 1s 2ms/step - loss: 0.4467 - accuracy: 0.7922 Epoch 3/3 313/313 [==============================] - 1s 2ms/step - loss: 0.4424 - accuracy: 0.7933 2022-01-07 20:35:04.916208: E tensorflow_io/core/kernels/kafka_kernels.cc:1001] Local: Timed out
Le modèle entraîné de manière incrémentielle peut être enregistré de manière périodique (en fonction des cas d'utilisation) et peut être utilisé pour déduire les données de test en mode en ligne ou hors ligne.
Les références:
Baldi, P., P. Sadowski et D. Whiteson. « Recherche de particules exotiques en physique des hautes énergies avec apprentissage en profondeur. » Nature Communications 5 (2 juillet 2014)
SUSY Dataset: https://archive.ics.uci.edu/ml/datasets/SUSY#