Ver en TensorFlow.org Ejecutar en Google Colab Ver fuente en GitHub Descargar libreta

Descripción general

Este tutorial demuestra la tfio.genome paquete que ofrece la genómica de uso común funcionalidad IO - saber leer varios formatos de archivo de la genómica y que también proporciona algunas operaciones comunes para la preparación de los datos (por ejemplo - una codificación caliente o analizar la calidad Phred en probabilidades).

Este paquete utiliza el Google Núcleo biblioteca para proporcionar parte de la funcionalidad básica.

Configuración

try:
  %tensorflow_version 2.x
except Exception:
  pass
!pip install -q tensorflow-io
import tensorflow_io as tfio
import tensorflow as tf

Datos FASTQ

FASTQ es un formato de archivo de genómica común que almacena información de secuencia además de información de calidad de base.

En primer lugar, vamos a descargar una muestra fastq archivo.

# Download some sample data:
curl -OL https://raw.githubusercontent.com/tensorflow/io/master/tests/test_genome/test.fastq
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   407  100   407    0     0   2035      0 --:--:-- --:--:-- --:--:--  2035

Leer datos de FASTQ

Ahora, el uso de let tfio.genome.read_fastq para leer este archivo (tenga en cuenta una tf.data API próximamente).

fastq_data = tfio.genome.read_fastq(filename="test.fastq")
print(fastq_data.sequences)
print(fastq_data.raw_quality)
tf.Tensor(
[b'GATTACA'
 b'CGTTAGCGCAGGGGGCATCTTCACACTGGTGACAGGTAACCGCCGTAGTAAAGGTTCCGCCTTTCACT'
 b'CGGCTGGTCAGGCTGACATCGCCGCCGGCCTGCAGCGAGCCGCTGC' b'CGG'], shape=(4,), dtype=string)
tf.Tensor(
[b'BB>B@FA'
 b'AAAAABF@BBBDGGGG?FFGFGHBFBFBFABBBHGGGFHHCEFGGGGG?FGFFHEDG3EFGGGHEGHG'
 b'FAFAF;F/9;.:/;999B/9A.DFFF;-->.AAB/FC;9-@-=;=.' b'FAD'], shape=(4,), dtype=string)

Como se ve, el vuelto fastq_data tiene fastq_data.sequences que es un tensor de cadena de todas las secuencias en el archivo FASTQ (que puede ser cada uno un tamaño diferente), junto con fastq_data.raw_quality que incluye Phred codificada la información de calidad acerca de la calidad de cada lectura de base en la secuencia.

Calidad

Puede utilizar una operación auxiliar para convertir esta información de calidad en probabilidades si está interesado.

quality = tfio.genome.phred_sequences_to_probability(fastq_data.raw_quality)
print(quality.shape)
print(quality.row_lengths().numpy())
print(quality)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py:574: calling map_fn_v2 (from tensorflow.python.ops.map_fn) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Use fn_output_signature instead
(4, None, 1)
[ 7 68 46  3]
<tf.RaggedTensor [[[0.0005011872854083776], [0.0005011872854083776], [0.0012589251855388284], [0.0005011872854083776], [0.0007943279924802482], [0.00019952621369156986], [0.0006309572490863502]], [[0.0006309572490863502], [0.0006309572490863502], [0.0006309572490863502], [0.0006309572490863502], [0.0006309572490863502], [0.0005011872854083776], [0.00019952621369156986], [0.0007943279924802482], [0.0005011872854083776], [0.0005011872854083776], [0.0005011872854083776], [0.0003162277571391314], [0.0001584893325343728], [0.0001584893325343728], [0.0001584893325343728], [0.0001584893325343728], [0.0010000000474974513], [0.00019952621369156986], [0.00019952621369156986], [0.0001584893325343728], [0.00019952621369156986], [0.0001584893325343728], [0.00012589251855388284], [0.0005011872854083776], [0.00019952621369156986], [0.0005011872854083776], [0.00019952621369156986], [0.0005011872854083776], [0.00019952621369156986], [0.0006309572490863502], [0.0005011872854083776], [0.0005011872854083776], [0.0005011872854083776], [0.00012589251855388284], [0.0001584893325343728], [0.0001584893325343728], [0.0001584893325343728], [0.00019952621369156986], [0.00012589251855388284], [0.00012589251855388284], [0.0003981070767622441], [0.0002511885541025549], [0.00019952621369156986], [0.0001584893325343728], [0.0001584893325343728], [0.0001584893325343728], [0.0001584893325343728], [0.0001584893325343728], [0.0010000000474974513], [0.00019952621369156986], [0.0001584893325343728], [0.00019952621369156986], [0.00019952621369156986], [0.00012589251855388284], [0.0002511885541025549], [0.0003162277571391314], [0.0001584893325343728], [0.015848929062485695], [0.0002511885541025549], [0.00019952621369156986], [0.0001584893325343728], [0.0001584893325343728], [0.0001584893325343728], [0.00012589251855388284], [0.0002511885541025549], [0.0001584893325343728], [0.00012589251855388284], [0.0001584893325343728]], [[0.00019952621369156986], [0.0006309572490863502], [0.00019952621369156986], [0.0006309572490863502], [0.00019952621369156986], [0.002511885715648532], [0.00019952621369156986], [0.03981072083115578], [0.003981071058660746], [0.002511885715648532], [0.050118714570999146], [0.003162277629598975], [0.03981072083115578], [0.002511885715648532], [0.003981071058660746], [0.003981071058660746], [0.003981071058660746], [0.0005011872854083776], [0.03981072083115578], [0.003981071058660746], [0.0006309572490863502], [0.050118714570999146], [0.0003162277571391314], [0.00019952621369156986], [0.00019952621369156986], [0.00019952621369156986], [0.002511885715648532], [0.06309572607278824], [0.06309572607278824], [0.0012589251855388284], [0.050118714570999146], [0.0006309572490863502], [0.0006309572490863502], [0.0005011872854083776], [0.03981072083115578], [0.00019952621369156986], [0.0003981070767622441], [0.002511885715648532], [0.003981071058660746], [0.06309572607278824], [0.0007943279924802482], [0.06309572607278824], [0.001584893325343728], [0.002511885715648532], [0.001584893325343728], [0.050118714570999146]], [[0.00019952621369156986], [0.0006309572490863502], [0.0003162277571391314]]]>

Una codificación caliente

Usted también puede querer para codificar los datos de la secuencia del genoma (que consta de A T C G bases) utilizando un un codificador caliente. Hay una operación incorporada que puede ayudar con esto.

one_hot = tfio.genome.sequences_to_onehot(fastq_data.sequences)
print(one_hot)
print(one_hot.shape)
<tf.RaggedTensor [[[0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0], [1, 0, 0, 0]], [[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 0, 1], [1, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 0, 1], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1]], [[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]], [[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0]]]>
(4, None, 4)
print(tfio.genome.sequences_to_onehot.__doc__)
Convert DNA sequences into a one hot nucleotide encoding.

    Each nucleotide in each sequence is mapped as follows:
    A -> [1, 0, 0, 0]
    C -> [0, 1, 0, 0]
    G -> [0 ,0 ,1, 0]
    T -> [0, 0, 0, 1]

    If for some reason a non (A, T, C, G) character exists in the string, it is
    currently mapped to a error one hot encoding [1, 1, 1, 1].

    Args:
        sequences: A tf.string tensor where each string represents a DNA sequence

    Returns:
        tf.RaggedTensor: The output sequences with nucleotides one hot encoded.