دفق البيانات المنظمة من Elasticsearch باستخدام Tensorflow-IO

عرض على TensorFlow.org تشغيل في Google Colab عرض المصدر على جيثب تحميل دفتر

ملخص

ويركز هذا البرنامج التعليمي على تدفق البيانات من Elasticsearch العنقودية في tf.data.Dataset الذي يستخدم بعد ذلك بالتزامن مع tf.keras للتدريب والاستدلال.

Elasticseach هو في الأساس محرك بحث موزع يدعم تخزين البيانات المهيكلة وغير المهيكلة والجغرافية المكانية والرقمية وما إلى ذلك. لغرض هذا البرنامج التعليمي ، يتم استخدام مجموعة بيانات مع سجلات منظمة.

حزم الإعداد

و elasticsearch يستخدم حزمة لإعداد وتخزين البيانات ضمن مؤشرات elasticsearch لأغراض العرض التوضيحي فقط. في مجموعات الإنتاج الواقعية التي تحتوي على العديد من العقد ، قد تتلقى المجموعة البيانات من موصلات مثل logstash وما إلى ذلك.

مرة واحدة هو البيانات المتوفرة في الكتلة elasticsearch، فقط tensorflow-io هو مطلوب لدفق البيانات في النماذج.

قم بتثبيت حزم tensorflow-io و elasticsearch المطلوبة

pip install tensorflow-io
pip install elasticsearch

حزم الاستيراد

import os
import time
from sklearn.model_selection import train_test_split
from elasticsearch import Elasticsearch
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental import preprocessing
import tensorflow_io as tfio

تحقق من صحة واردات tf و tfio

print("tensorflow-io version: {}".format(tfio.__version__))
print("tensorflow version: {}".format(tf.__version__))
tensorflow-io version: 0.16.0
tensorflow version: 2.3.0

قم بتنزيل وإعداد مثيل Elasticsearch

لأغراض العرض ، يتم استخدام إصدار مفتوح المصدر من حزمة elasticsearch.


wget -q https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-oss-7.9.2-linux-x86_64.tar.gz
wget -q https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-oss-7.9.2-linux-x86_64.tar.gz.sha512
tar -xzf elasticsearch-oss-7.9.2-linux-x86_64.tar.gz
sudo chown -R daemon:daemon elasticsearch-7.9.2/
shasum -a 512 -c elasticsearch-oss-7.9.2-linux-x86_64.tar.gz.sha512
elasticsearch-oss-7.9.2-linux-x86_64.tar.gz: OK

قم بتشغيل المثيل كعملية خفية


sudo -H -u daemon elasticsearch-7.9.2/bin/elasticsearch
Starting job # 0 in a separate thread.
# Sleep for few seconds to let the instance start.
time.sleep(20)

مرة واحدة وقد بدأت المثال، البقرى ل elasticsearch في عمليات قائمة لتأكيد توفر.


ps -ef | grep elasticsearch
root         144     142  0 21:24 ?        00:00:00 sudo -H -u daemon elasticsearch-7.9.2/bin/elasticsearch
daemon       145     144 86 21:24 ?        00:00:17 /content/elasticsearch-7.9.2/jdk/bin/java -Xshare:auto -Des.networkaddress.cache.ttl=60 -Des.networkaddress.cache.negative.ttl=10 -XX:+AlwaysPreTouch -Xss1m -Djava.awt.headless=true -Dfile.encoding=UTF-8 -Djna.nosys=true -XX:-OmitStackTraceInFastThrow -XX:+ShowCodeDetailsInExceptionMessages -Dio.netty.noUnsafe=true -Dio.netty.noKeySetOptimization=true -Dio.netty.recycler.maxCapacityPerThread=0 -Dio.netty.allocator.numDirectArenas=0 -Dlog4j.shutdownHookEnabled=false -Dlog4j2.disable.jmx=true -Djava.locale.providers=SPI,COMPAT -Xms1g -Xmx1g -XX:+UseG1GC -XX:G1ReservePercent=25 -XX:InitiatingHeapOccupancyPercent=30 -Djava.io.tmpdir=/tmp/elasticsearch-16913031424109346409 -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=data -XX:ErrorFile=logs/hs_err_pid%p.log -Xlog:gc*,gc+age=trace,safepoint:file=logs/gc.log:utctime,pid,tags:filecount=32,filesize=64m -XX:MaxDirectMemorySize=536870912 -Des.path.home=/content/elasticsearch-7.9.2 -Des.path.conf=/content/elasticsearch-7.9.2/config -Des.distribution.flavor=oss -Des.distribution.type=tar -Des.bundled_jdk=true -cp /content/elasticsearch-7.9.2/lib/* org.elasticsearch.bootstrap.Elasticsearch
root         382     380  0 21:24 ?        00:00:00 grep elasticsearch

الاستعلام عن نقطة النهاية الأساسية لاسترداد معلومات حول الكتلة.


curl -sX GET "localhost:9200/"
{
  "name" : "d1bc7d054c69",
  "cluster_name" : "elasticsearch",
  "cluster_uuid" : "P8YXfKqYS-OS3k9CdMmlsw",
  "version" : {
    "number" : "7.9.2",
    "build_flavor" : "oss",
    "build_type" : "tar",
    "build_hash" : "d34da0ea4a966c4e49417f2da2f244e3e97b4e6e",
    "build_date" : "2020-09-23T00:45:33.626720Z",
    "build_snapshot" : false,
    "lucene_version" : "8.6.2",
    "minimum_wire_compatibility_version" : "6.8.0",
    "minimum_index_compatibility_version" : "6.0.0-beta1"
  },
  "tagline" : "You Know, for Search"
}

استكشف مجموعة البيانات

لغرض هذا البرنامج التعليمي، يتيح تحميل PetFinder بيانات وتغذية البيانات إلى elasticsearch يدويا. الهدف من مشكلة التصنيف هذه هو التنبؤ بما إذا كان سيتم تبني الحيوان الأليف أم لا.

dataset_url = 'http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip'
csv_file = 'datasets/petfinder-mini/petfinder-mini.csv'
tf.keras.utils.get_file('petfinder_mini.zip', dataset_url,
                        extract=True, cache_dir='.')
pf_df = pd.read_csv(csv_file)
Downloading data from http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip
1671168/1668792 [==============================] - 0s 0us/step
pf_df.head()

لغرض البرنامج التعليمي ، يتم إجراء تعديلات على عمود التسمية. سيشير 0 إلى أنه لم يتم تبني الحيوان الأليف ، وسيشير الرقم 1 إلى أنه تم تبنيها.

# In the original dataset "4" indicates the pet was not adopted.
pf_df['target'] = np.where(pf_df['AdoptionSpeed']==4, 0, 1)

# Drop un-used columns.
pf_df = pf_df.drop(columns=['AdoptionSpeed', 'Description'])
# Number of datapoints and columns
len(pf_df), len(pf_df.columns)
(11537, 14)

قسّم مجموعة البيانات

train_df, test_df = train_test_split(pf_df, test_size=0.3, shuffle=True)
print("Number of training samples: ",len(train_df))
print("Number of testing sample: ",len(test_df))
Number of training samples:  8075
Number of testing sample:  3462

تخزين بيانات القطار والاختبار في فهارس البحث المرن

يحاكي تخزين البيانات في مجموعة البحث المطاطي المحلي بيئة لاسترجاع البيانات عن بعد بشكل مستمر لأغراض التدريب والاستدلال.

ES_NODES = "http://localhost:9200"

def prepare_es_data(index, doc_type, df):
  records = df.to_dict(orient="records")
  es_data = []
  for idx, record in enumerate(records):
    meta_dict = {
          "index": {
              "_index": index, 
              "_type": doc_type, 
              "_id": idx
          }
      }
    es_data.append(meta_dict)
    es_data.append(record)

  return es_data

def index_es_data(index, es_data):
  es_client = Elasticsearch(hosts = [ES_NODES])
  if es_client.indices.exists(index):
      print("deleting the '{}' index.".format(index))
      res = es_client.indices.delete(index=index)
      print("Response from server: {}".format(res))

  print("creating the '{}' index.".format(index))
  res = es_client.indices.create(index=index)
  print("Response from server: {}".format(res))

  print("bulk index the data")
  res = es_client.bulk(index=index, body=es_data, refresh = True)
  print("Errors: {}, Num of records indexed: {}".format(res["errors"], len(res["items"])))
train_es_data = prepare_es_data(index="train", doc_type="pet", df=train_df)
test_es_data = prepare_es_data(index="test", doc_type="pet", df=test_df)

index_es_data(index="train", es_data=train_es_data)
time.sleep(3)
index_es_data(index="test", es_data=test_es_data)
creating the 'train' index.
Response from server: {'acknowledged': True, 'shards_acknowledged': True, 'index': 'train'}
bulk index the data
/usr/local/lib/python3.6/dist-packages/elasticsearch/connection/base.py:190: ElasticsearchDeprecationWarning: [types removal] Specifying types in bulk requests is deprecated.
  warnings.warn(message, category=ElasticsearchDeprecationWarning)
Errors: False, Num of records indexed: 8075
creating the 'test' index.
Response from server: {'acknowledged': True, 'shards_acknowledged': True, 'index': 'test'}
bulk index the data
Errors: False, Num of records indexed: 3462

قم بإعداد مجموعات بيانات tfio

مرة واحدة يتوفر البيانات في الكتلة، فقط tensorflow-io هو مطلوب لدفق البيانات من المؤشرات. و elasticsearch.ElasticsearchIODataset يستخدم فئة لهذا الغرض. ويرث فئة من tf.data.Dataset وبالتالي الكشف عن وظائف مفيدة من tf.data.Dataset من خارج منطقة الجزاء.

مجموعة بيانات التدريب

BATCH_SIZE=32
HEADERS = {"Content-Type": "application/json"}

train_ds = tfio.experimental.elasticsearch.ElasticsearchIODataset(
        nodes=[ES_NODES],
        index="train",
        doc_type="pet",
        headers=HEADERS
    )

# Prepare a tuple of (features, label)
train_ds = train_ds.map(lambda v: (v, v.pop("target")))
train_ds = train_ds.batch(BATCH_SIZE)
Connection successful: http://localhost:9200/_cluster/health

اختبار مجموعة البيانات

test_ds = tfio.experimental.elasticsearch.ElasticsearchIODataset(
        nodes=[ES_NODES],
        index="test",
        doc_type="pet",
        headers=HEADERS
    )

# Prepare a tuple of (features, label)
test_ds = test_ds.map(lambda v: (v, v.pop("target")))
test_ds = test_ds.batch(BATCH_SIZE)
Connection successful: http://localhost:9200/_cluster/health

حدد طبقات المعالجة المسبقة لـ keras

وفقا ل تعليمي منظم البيانات ، فمن المستحسن استخدام الطبقات Keras تجهيزها لأنها أكثر سهولة، ويمكن دمجها بسهولة مع النماذج. ومع ذلك، فإن مستوى feature_columns يمكن أن تستخدم أيضا.

من أجل فهم أفضل لل preprocessing_layers في تصنيف البيانات المهيكلة، يرجى الرجوع إلى البرنامج التعليمي البيانات المهيكلة

def get_normalization_layer(name, dataset):
  # Create a Normalization layer for our feature.
  normalizer = preprocessing.Normalization()

  # Prepare a Dataset that only yields our feature.
  feature_ds = dataset.map(lambda x, y: x[name])

  # Learn the statistics of the data.
  normalizer.adapt(feature_ds)

  return normalizer

def get_category_encoding_layer(name, dataset, dtype, max_tokens=None):
  # Create a StringLookup layer which will turn strings into integer indices
  if dtype == 'string':
    index = preprocessing.StringLookup(max_tokens=max_tokens)
  else:
    index = preprocessing.IntegerLookup(max_values=max_tokens)

  # Prepare a Dataset that only yields our feature
  feature_ds = dataset.map(lambda x, y: x[name])

  # Learn the set of possible values and assign them a fixed integer index.
  index.adapt(feature_ds)

  # Create a Discretization for our integer indices.
  encoder = preprocessing.CategoryEncoding(max_tokens=index.vocab_size())

  # Prepare a Dataset that only yields our feature.
  feature_ds = feature_ds.map(index)

  # Learn the space of possible indices.
  encoder.adapt(feature_ds)

  # Apply one-hot encoding to our indices. The lambda function captures the
  # layer so you can use them, or include them in the functional model later.
  return lambda feature: encoder(index(feature))

قم بإحضار دفعة ولاحظ ميزات سجل عينة. وهذا سوف يساعد في تحديد keras تجهيزها طبقات لتدريب tf.keras نموذج.

ds_iter = iter(train_ds)
features, label = next(ds_iter)
{key: value.numpy()[0] for key,value in features.items()}
{'Age': 2,
 'Breed1': b'Tabby',
 'Color1': b'Black',
 'Color2': b'Cream',
 'Fee': 0,
 'FurLength': b'Short',
 'Gender': b'Male',
 'Health': b'Healthy',
 'MaturitySize': b'Small',
 'PhotoAmt': 4,
 'Sterilized': b'No',
 'Type': b'Cat',
 'Vaccinated': b'No'}

اختر مجموعة فرعية من الميزات.

all_inputs = []
encoded_features = []

# Numeric features.
for header in ['PhotoAmt', 'Fee']:
  numeric_col = tf.keras.Input(shape=(1,), name=header)
  normalization_layer = get_normalization_layer(header, train_ds)
  encoded_numeric_col = normalization_layer(numeric_col)
  all_inputs.append(numeric_col)
  encoded_features.append(encoded_numeric_col)

# Categorical features encoded as string.
categorical_cols = ['Type', 'Color1', 'Color2', 'Gender', 'MaturitySize',
                    'FurLength', 'Vaccinated', 'Sterilized', 'Health', 'Breed1']
for header in categorical_cols:
  categorical_col = tf.keras.Input(shape=(1,), name=header, dtype='string')
  encoding_layer = get_category_encoding_layer(header, train_ds, dtype='string',
                                               max_tokens=5)
  encoded_categorical_col = encoding_layer(categorical_col)
  all_inputs.append(categorical_col)
  encoded_features.append(encoded_categorical_col)

بناء النموذج وتجميعه وتدريبه

# Set the parameters

OPTIMIZER="adam"
LOSS=tf.keras.losses.BinaryCrossentropy(from_logits=True)
METRICS=['accuracy']
EPOCHS=10
# Convert the feature columns into a tf.keras layer
all_features = tf.keras.layers.concatenate(encoded_features)

# design/build the model
x = tf.keras.layers.Dense(32, activation="relu")(all_features)
x = tf.keras.layers.Dropout(0.5)(x)
x = tf.keras.layers.Dense(64, activation="relu")(x)
x = tf.keras.layers.Dropout(0.5)(x)
output = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(all_inputs, output)

tf.keras.utils.plot_model(model, rankdir='LR', show_shapes=True)

بي إن جي

# compile the model
model.compile(optimizer=OPTIMIZER, loss=LOSS, metrics=METRICS)
# fit the model
model.fit(train_ds, epochs=EPOCHS)
Epoch 1/10
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.py:543: UserWarning: Input dict contained keys ['Age'] which did not match any model input. They will be ignored by the model.
  [n for n in tensors.keys() if n not in ref_input_names])
253/253 [==============================] - 4s 14ms/step - loss: 0.6169 - accuracy: 0.6042
Epoch 2/10
253/253 [==============================] - 4s 14ms/step - loss: 0.5634 - accuracy: 0.6937
Epoch 3/10
253/253 [==============================] - 4s 15ms/step - loss: 0.5573 - accuracy: 0.6981
Epoch 4/10
253/253 [==============================] - 4s 15ms/step - loss: 0.5528 - accuracy: 0.7087
Epoch 5/10
253/253 [==============================] - 4s 14ms/step - loss: 0.5512 - accuracy: 0.7173
Epoch 6/10
253/253 [==============================] - 4s 15ms/step - loss: 0.5456 - accuracy: 0.7219
Epoch 7/10
253/253 [==============================] - 4s 15ms/step - loss: 0.5397 - accuracy: 0.7283
Epoch 8/10
253/253 [==============================] - 4s 14ms/step - loss: 0.5385 - accuracy: 0.7331
Epoch 9/10
253/253 [==============================] - 4s 15ms/step - loss: 0.5355 - accuracy: 0.7326
Epoch 10/10
253/253 [==============================] - 4s 15ms/step - loss: 0.5412 - accuracy: 0.7321
<tensorflow.python.keras.callbacks.History at 0x7f5c235112e8>

استدل على بيانات الاختبار

res = model.evaluate(test_ds)
print("test loss, test acc:", res)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.py:543: UserWarning: Input dict contained keys ['Age'] which did not match any model input. They will be ignored by the model.
  [n for n in tensors.keys() if n not in ref_input_names])
109/109 [==============================] - 2s 15ms/step - loss: 0.5344 - accuracy: 0.7421
test loss, test acc: [0.534355640411377, 0.7420566082000732]

مراجع: