Voir sur TensorFlow.org | Exécuter dans Google Colab | Voir la source sur GitHub | Télécharger le cahier |
Aperçu
Ce tutoriel montre comment utiliser le lecteur BigQuery tensorflow pour la formation réseau de neurones en utilisant l'API séquentielle Keras.
Base de données
Ce tutoriel utilise le recensement des États-Unis sur le revenu Dataset fourni par l' UC Irvine machine Repository apprentissage . Cet ensemble de données contient des informations sur les personnes d'une base de données du recensement de 1994, y compris l'âge, l'éducation, l'état matrimonial, la profession et si elles gagnent plus de 50 000 $ par an.
Installer
Configurer votre projet GCP
Les étapes suivantes sont requises, quel que soit l'environnement de votre ordinateur portable.
- Sélectionnez ou créez un projet GCP.
- Assurez-vous que la facturation est activée pour votre projet.
- Activer l'API BigQuery Storage
- Entrez votre ID de projet dans la cellule ci-dessous. Exécutez ensuite la cellule pour vous assurer que le SDK Cloud utilise le bon projet pour toutes les commandes de ce notebook.
Installez les packages requis et redémarrez le runtime
try:
# Use the Colab's preinstalled TensorFlow 2.x
%tensorflow_version 2.x
except:
pass
pip install fastavro
pip install tensorflow-io==0.9.0
pip install google-cloud-bigquery-storage
Authentifier
from google.colab import auth
auth.authenticate_user()
print('Authenticated')
Définissez votre ID de PROJET
PROJECT_ID = "<YOUR PROJECT>"
! gcloud config set project $PROJECT_ID
%env GCLOUD_PROJECT=$PROJECT_ID
Importer des bibliothèques Python, définir des constantes
from __future__ import absolute_import, division, print_function, unicode_literals
import os
from six.moves import urllib
import tempfile
import numpy as np
import pandas as pd
import tensorflow as tf
from google.cloud import bigquery
from google.api_core.exceptions import GoogleAPIError
LOCATION = 'us'
# Storage directory
DATA_DIR = os.path.join(tempfile.gettempdir(), 'census_data')
# Download options.
DATA_URL = 'https://storage.googleapis.com/cloud-samples-data/ml-engine/census/data'
TRAINING_FILE = 'adult.data.csv'
EVAL_FILE = 'adult.test.csv'
TRAINING_URL = '%s/%s' % (DATA_URL, TRAINING_FILE)
EVAL_URL = '%s/%s' % (DATA_URL, EVAL_FILE)
DATASET_ID = 'census_dataset'
TRAINING_TABLE_ID = 'census_training_table'
EVAL_TABLE_ID = 'census_eval_table'
CSV_SCHEMA = [
bigquery.SchemaField("age", "FLOAT64"),
bigquery.SchemaField("workclass", "STRING"),
bigquery.SchemaField("fnlwgt", "FLOAT64"),
bigquery.SchemaField("education", "STRING"),
bigquery.SchemaField("education_num", "FLOAT64"),
bigquery.SchemaField("marital_status", "STRING"),
bigquery.SchemaField("occupation", "STRING"),
bigquery.SchemaField("relationship", "STRING"),
bigquery.SchemaField("race", "STRING"),
bigquery.SchemaField("gender", "STRING"),
bigquery.SchemaField("capital_gain", "FLOAT64"),
bigquery.SchemaField("capital_loss", "FLOAT64"),
bigquery.SchemaField("hours_per_week", "FLOAT64"),
bigquery.SchemaField("native_country", "STRING"),
bigquery.SchemaField("income_bracket", "STRING"),
]
UNUSED_COLUMNS = ["fnlwgt", "education_num"]
Importer des données de recensement dans BigQuery
Définir des méthodes d'assistance pour charger des données dans BigQuery
def create_bigquery_dataset_if_necessary(dataset_id):
# Construct a full Dataset object to send to the API.
client = bigquery.Client(project=PROJECT_ID)
dataset = bigquery.Dataset(bigquery.dataset.DatasetReference(PROJECT_ID, dataset_id))
dataset.location = LOCATION
try:
dataset = client.create_dataset(dataset) # API request
return True
except GoogleAPIError as err:
if err.code != 409: # http_client.CONFLICT
raise
return False
def load_data_into_bigquery(url, table_id):
create_bigquery_dataset_if_necessary(DATASET_ID)
client = bigquery.Client(project=PROJECT_ID)
dataset_ref = client.dataset(DATASET_ID)
table_ref = dataset_ref.table(table_id)
job_config = bigquery.LoadJobConfig()
job_config.write_disposition = bigquery.WriteDisposition.WRITE_TRUNCATE
job_config.source_format = bigquery.SourceFormat.CSV
job_config.schema = CSV_SCHEMA
load_job = client.load_table_from_uri(
url, table_ref, job_config=job_config
)
print("Starting job {}".format(load_job.job_id))
load_job.result() # Waits for table load to complete.
print("Job finished.")
destination_table = client.get_table(table_ref)
print("Loaded {} rows.".format(destination_table.num_rows))
Chargez les données de recensement dans BigQuery.
load_data_into_bigquery(TRAINING_URL, TRAINING_TABLE_ID)
load_data_into_bigquery(EVAL_URL, EVAL_TABLE_ID)
Starting job 2ceffef8-e6e4-44bb-9e86-3d97b0501187 Job finished. Loaded 32561 rows. Starting job bf66f1b3-2506-408b-9009-c19f4ae9f58a Job finished. Loaded 16278 rows.
Confirmer que les données ont été importées
A FAIRE : remplacez <VOTRE PROJET> par votre PROJECT_ID
%%bigquery --use_bqstorage_api
SELECT * FROM `<YOUR PROJECT>.census_dataset.census_training_table` LIMIT 5
Charger les données de recensement dans TensorFlow DataSet à l'aide du lecteur BigQuery
Lire et transformer les données cesnus de BigQuery en TensorFlow DataSet
from tensorflow.python.framework import ops
from tensorflow.python.framework import dtypes
from tensorflow_io.bigquery import BigQueryClient
from tensorflow_io.bigquery import BigQueryReadSession
def transform_row(row_dict):
# Trim all string tensors
trimmed_dict = { column:
(tf.strings.strip(tensor) if tensor.dtype == 'string' else tensor)
for (column,tensor) in row_dict.items()
}
# Extract feature column
income_bracket = trimmed_dict.pop('income_bracket')
# Convert feature column to 0.0/1.0
income_bracket_float = tf.cond(tf.equal(tf.strings.strip(income_bracket), '>50K'),
lambda: tf.constant(1.0),
lambda: tf.constant(0.0))
return (trimmed_dict, income_bracket_float)
def read_bigquery(table_name):
tensorflow_io_bigquery_client = BigQueryClient()
read_session = tensorflow_io_bigquery_client.read_session(
"projects/" + PROJECT_ID,
PROJECT_ID, table_name, DATASET_ID,
list(field.name for field in CSV_SCHEMA
if not field.name in UNUSED_COLUMNS),
list(dtypes.double if field.field_type == 'FLOAT64'
else dtypes.string for field in CSV_SCHEMA
if not field.name in UNUSED_COLUMNS),
requested_streams=2)
dataset = read_session.parallel_read_rows()
transformed_ds = dataset.map(transform_row)
return transformed_ds
BATCH_SIZE = 32
training_ds = read_bigquery(TRAINING_TABLE_ID).shuffle(10000).batch(BATCH_SIZE)
eval_ds = read_bigquery(EVAL_TABLE_ID).batch(BATCH_SIZE)
Définir des colonnes d'objets
def get_categorical_feature_values(column):
query = 'SELECT DISTINCT TRIM({}) FROM `{}`.{}.{}'.format(column, PROJECT_ID, DATASET_ID, TRAINING_TABLE_ID)
client = bigquery.Client(project=PROJECT_ID)
dataset_ref = client.dataset(DATASET_ID)
job_config = bigquery.QueryJobConfig()
query_job = client.query(query, job_config=job_config)
result = query_job.to_dataframe()
return result.values[:,0]
from tensorflow import feature_column
feature_columns = []
# numeric cols
for header in ['capital_gain', 'capital_loss', 'hours_per_week']:
feature_columns.append(feature_column.numeric_column(header))
# categorical cols
for header in ['workclass', 'marital_status', 'occupation', 'relationship',
'race', 'native_country', 'education']:
categorical_feature = feature_column.categorical_column_with_vocabulary_list(
header, get_categorical_feature_values(header))
categorical_feature_one_hot = feature_column.indicator_column(categorical_feature)
feature_columns.append(categorical_feature_one_hot)
# bucketized cols
age = feature_column.numeric_column('age')
age_buckets = feature_column.bucketized_column(age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])
feature_columns.append(age_buckets)
feature_layer = tf.keras.layers.DenseFeatures(feature_columns)
Construire et entraîner un modèle
Modèle de construction
Dense = tf.keras.layers.Dense
model = tf.keras.Sequential(
[
feature_layer,
Dense(100, activation=tf.nn.relu, kernel_initializer='uniform'),
Dense(75, activation=tf.nn.relu),
Dense(50, activation=tf.nn.relu),
Dense(25, activation=tf.nn.relu),
Dense(1, activation=tf.nn.sigmoid)
])
# Compile Keras model
model.compile(
loss='binary_crossentropy',
metrics=['accuracy'])
Maquette de train
model.fit(training_ds, epochs=5)
WARNING:tensorflow:Layer sequential is casting an input tensor from dtype float64 to the layer's dtype of float32, which is new behavior in TensorFlow 2. The layer has dtype float32 because it's dtype defaults to floatx. If you intended to run this layer in float32, you can safely ignore this warning. If in doubt, this warning is likely only an issue if you are porting a TensorFlow 1.X model to TensorFlow 2. To change all layers to have dtype float64 by default, call `tf.keras.backend.set_floatx('float64')`. To change just this layer, pass dtype='float64' to the layer constructor. If you are the author of this layer, you can disable autocasting by passing autocast=False to the base Layer constructor. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/feature_column/feature_column_v2.py:4276: IndicatorColumn._variable_shape (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/feature_column/feature_column_v2.py:4331: VocabularyListCategoricalColumn._num_buckets (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. Epoch 1/5 1018/1018 [==============================] - 17s 17ms/step - loss: 0.5985 - accuracy: 0.8105 Epoch 2/5 1018/1018 [==============================] - 10s 10ms/step - loss: 0.3670 - accuracy: 0.8324 Epoch 3/5 1018/1018 [==============================] - 11s 10ms/step - loss: 0.3487 - accuracy: 0.8393 Epoch 4/5 1018/1018 [==============================] - 11s 10ms/step - loss: 0.3398 - accuracy: 0.8435 Epoch 5/5 1018/1018 [==============================] - 11s 11ms/step - loss: 0.3377 - accuracy: 0.8455 <tensorflow.python.keras.callbacks.History at 0x7f978f5b91d0>
Évaluer le modèle
Évaluer le modèle
loss, accuracy = model.evaluate(eval_ds)
print("Accuracy", accuracy)
509/509 [==============================] - 8s 15ms/step - loss: 0.3338 - accuracy: 0.8398 Accuracy 0.8398452
Évaluer quelques échantillons aléatoires
sample_x = {
'age' : np.array([56, 36]),
'workclass': np.array(['Local-gov', 'Private']),
'education': np.array(['Bachelors', 'Bachelors']),
'marital_status': np.array(['Married-civ-spouse', 'Married-civ-spouse']),
'occupation': np.array(['Tech-support', 'Other-service']),
'relationship': np.array(['Husband', 'Husband']),
'race': np.array(['White', 'Black']),
'gender': np.array(['Male', 'Male']),
'capital_gain': np.array([0, 7298]),
'capital_loss': np.array([0, 0]),
'hours_per_week': np.array([40, 36]),
'native_country': np.array(['United-States', 'United-States'])
}
model.predict(sample_x)
array([[0.5541261], [0.6209938]], dtype=float32)