TensorFlow Hub คือพื้นที่เก็บข้อมูลของโมเดลแมชชีนเลิร์นนิงที่ผ่านการฝึกอบรมแล้ว

  !pip install --upgrade tensorflow_hub

  import tensorflow_hub as hub

  model = hub.KerasLayer("https://tfhub.dev/google/nnlm-en-dim128/2")
  embeddings = model(["The rain in Spain.", "falls",
                      "mainly", "In the plain!"])

  print(embeddings.shape)  #(4,128)
TensorFlow Hub เป็นพื้นที่เก็บข้อมูลของโมเดลการเรียนรู้ของเครื่องที่ผ่านการฝึกอบรมซึ่งพร้อมสำหรับการปรับแต่งอย่างละเอียดและปรับใช้ได้ทุกที่ นำแบบจำลองที่ผ่านการฝึกอบรมมาใช้ซ้ำ เช่น BERT และ Faster R-CNN ด้วยโค้ดเพียงไม่กี่บรรทัด
  • เรียนรู้เกี่ยวกับวิธีการใช้ TensorFlow Hub และวิธีการทำงาน
  • บทช่วยสอนจะแสดงตัวอย่างตั้งแต่ต้นจนจบโดยใช้ TensorFlow Hub
  • ค้นหาโมเดล TF, TFLite และ TF.js ที่ได้รับการฝึกอบรมสำหรับกรณีการใช้งานของคุณ



โมเดล

ค้นหาโมเดลที่ได้รับการฝึกอบรมจากชุมชน TensorFlow บน TFHub.dev
ตรวจสอบ BERT สำหรับงาน NLP รวมถึงการจัดหมวดหมู่ข้อความและการตอบคำถาม
ใช้โมเดล Faster R-CNN Inception ResNet V2 640x640 สำหรับการตรวจจับวัตถุในภาพ
ถ่ายโอนสไตล์ของรูปภาพหนึ่งไปยังอีกรูปภาพหนึ่งโดยใช้โมเดลการถ่ายโอนสไตล์ของรูปภาพ
ใช้โมเดล TFLite นี้เพื่อจัดหมวดหมู่ภาพถ่ายอาหารบนอุปกรณ์เคลื่อนที่



ข่าวและประกาศ

ตรวจสอบ บล็อกของเรา สำหรับประกาศเพิ่มเติมและดูการอัปเดตล่าสุด #TFHub บน Twitter
เรียนรู้วิธีใช้ TensorFlow Hub เพื่อสร้างโซลูชัน ML ที่มีผลกระทบในโลกแห่งความเป็นจริง
หากต้องการสำรวจโซลูชัน ML สำหรับแอปบนอุปกรณ์เคลื่อนที่และเว็บของคุณ รวมถึง TensorFlow Hub โปรดไปที่หน้าแมชชีนเลิร์นนิงในอุปกรณ์ของ Google
TensorFlow Hub ทำให้ BERT ใช้งานง่ายกับโมเดลการประมวลผลล่วงหน้าใหม่
เรียนรู้วิธีใช้โมเดล SPICE เพื่อคัดลอกโน้ตเพลงจากเสียงสดโดยอัตโนมัติ



ชุมชน

เข้าร่วมชุมชน TensorFlow Hub