הצג באתר TensorFlow.org | הפעל ב-Google Colab | הצג ב-GitHub | הורד מחברת | ראה דגם TF Hub |
מדריך זה ממחיש כיצד ליצור הטמעות ממודול TensorFlow Hub (TF-Hub) בהינתן נתוני קלט, ולבנות אינדקס קרובים (ANN) משוערים באמצעות ההטבעות שחולצו. לאחר מכן ניתן להשתמש באינדקס להתאמה ואחזור של דמיון בזמן אמת.
כאשר עוסקים בקורפוס גדול של נתונים, זה לא יעיל לבצע התאמה מדויקת על ידי סריקת כל המאגר כדי למצוא את הפריטים הדומים ביותר לשאילתה נתונה בזמן אמת. לפיכך, אנו משתמשים באלגוריתם התאמת דמיון משוער המאפשר לנו להחליף מעט דיוק במציאת התאמות השכנות המדויקות ביותר לשיפור משמעותי במהירות.
במדריך זה, אנו מציגים דוגמה לחיפוש טקסט בזמן אמת על פני קורפוס של כותרות חדשות כדי למצוא את הכותרות הדומות ביותר לשאילתה. בניגוד לחיפוש מילות מפתח, זה לוכד את הדמיון הסמנטי המקודד בהטמעת הטקסט.
השלבים של הדרכה זו הם:
- הורד נתונים לדוגמה.
- צור הטמעות עבור הנתונים באמצעות מודול TF-Hub
- בניית אינדקס ANN עבור ההטבעות
- השתמש באינדקס להתאמת דמיון
אנו משתמשים ב- Apache Beam כדי ליצור את ההטמעות מהמודול TF-Hub. אנו משתמשים גם בספריית ANNOY של Spotify כדי לבנות את אינדקס השכנים הקרובים ביותר.
עוד דגמים
לדגמים בעלי אותה ארכיטקטורה אך הוכשרו בשפה אחרת, עיין באוסף זה . כאן תוכל למצוא את כל הטמעות הטקסט שמתארחות כעת ב- tfhub.dev .
הגדרה
התקן את הספריות הנדרשות.
pip install -q apache_beam
pip install -q 'scikit_learn~=0.23.0' # For gaussian_random_matrix.
pip install -q annoy
ייבא את הספריות הנדרשות
import os
import sys
import pickle
from collections import namedtuple
from datetime import datetime
import numpy as np
import apache_beam as beam
from apache_beam.transforms import util
import tensorflow as tf
import tensorflow_hub as hub
import annoy
from sklearn.random_projection import gaussian_random_matrix
print('TF version: {}'.format(tf.__version__))
print('TF-Hub version: {}'.format(hub.__version__))
print('Apache Beam version: {}'.format(beam.__version__))
TF version: 2.4.0 TF-Hub version: 0.11.0 Apache Beam version: 2.26.0
1. הורד נתונים לדוגמה
מערך נתונים של מיליון חדשות כותרות מכיל כותרות חדשות שפורסמו על פני תקופה של 15 שנים שמקורן בחברת השידור האוסטרלית המכובד (ABC). למערך החדשות הזה יש תיעוד היסטורי מסכם של אירועים ראויים לציון בעולם מתחילת 2003 ועד סוף 2017 עם התמקדות מפורטת יותר באוסטרליה.
פורמט : נתוני שתי עמודות מופרדות בטאבים: 1) תאריך פרסום ו-2) טקסט כותרת. אנחנו מתעניינים רק בטקסט הכותרת.
wget 'https://dataverse.harvard.edu/api/access/datafile/3450625?format=tab&gbrecs=true' -O raw.tsv
wc -l raw.tsv
head raw.tsv
--2021-01-07 12:50:08-- https://dataverse.harvard.edu/api/access/datafile/3450625?format=tab&gbrecs=true Resolving dataverse.harvard.edu (dataverse.harvard.edu)... 206.191.184.198 Connecting to dataverse.harvard.edu (dataverse.harvard.edu)|206.191.184.198|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 57600231 (55M) [text/tab-separated-values] Saving to: ‘raw.tsv’ raw.tsv 100%[===================>] 54.93M 14.7MB/s in 4.4s 2021-01-07 12:50:14 (12.4 MB/s) - ‘raw.tsv’ saved [57600231/57600231] 1103664 raw.tsv publish_date headline_text 20030219 "aba decides against community broadcasting licence" 20030219 "act fire witnesses must be aware of defamation" 20030219 "a g calls for infrastructure protection summit" 20030219 "air nz staff in aust strike for pay rise" 20030219 "air nz strike to affect australian travellers" 20030219 "ambitious olsson wins triple jump" 20030219 "antic delighted with record breaking barca" 20030219 "aussie qualifier stosur wastes four memphis match" 20030219 "aust addresses un security council over iraq"
לשם הפשטות, אנו שומרים רק את טקסט הכותרת ומסירים את תאריך הפרסום
!rm -r corpus
!mkdir corpus
with open('corpus/text.txt', 'w') as out_file:
with open('raw.tsv', 'r') as in_file:
for line in in_file:
headline = line.split('\t')[1].strip().strip('"')
out_file.write(headline+"\n")
rm: cannot remove 'corpus': No such file or directory
tail corpus/text.txt
severe storms forecast for nye in south east queensland snake catcher pleads for people not to kill reptiles south australia prepares for party to welcome new year strikers cool off the heat with big win in adelaide stunning images from the sydney to hobart yacht the ashes smiths warners near miss liven up boxing day test timelapse: brisbanes new year fireworks what 2017 meant to the kids of australia what the papodopoulos meeting may mean for ausus who is george papadopoulos the former trump campaign aide
2. צור הטמעות עבור הנתונים.
במדריך זה, אנו משתמשים במודל שפת הרשת העצבית (NNLM) כדי ליצור הטבעות עבור נתוני הכותרות. ניתן להשתמש בהטמעות המשפט בקלות כדי לחשב דמיון ברמת המשפט. אנו מפעילים את תהליך יצירת ההטמעה באמצעות Apache Beam.
שיטת מיצוי הטבעה
embed_fn = None
def generate_embeddings(text, module_url, random_projection_matrix=None):
# Beam will run this function in different processes that need to
# import hub and load embed_fn (if not previously loaded)
global embed_fn
if embed_fn is None:
embed_fn = hub.load(module_url)
embedding = embed_fn(text).numpy()
if random_projection_matrix is not None:
embedding = embedding.dot(random_projection_matrix)
return text, embedding
המר לשיטת tf.Example
def to_tf_example(entries):
examples = []
text_list, embedding_list = entries
for i in range(len(text_list)):
text = text_list[i]
embedding = embedding_list[i]
features = {
'text': tf.train.Feature(
bytes_list=tf.train.BytesList(value=[text.encode('utf-8')])),
'embedding': tf.train.Feature(
float_list=tf.train.FloatList(value=embedding.tolist()))
}
example = tf.train.Example(
features=tf.train.Features(
feature=features)).SerializeToString(deterministic=True)
examples.append(example)
return examples
צינור קרן
def run_hub2emb(args):
'''Runs the embedding generation pipeline'''
options = beam.options.pipeline_options.PipelineOptions(**args)
args = namedtuple("options", args.keys())(*args.values())
with beam.Pipeline(args.runner, options=options) as pipeline:
(
pipeline
| 'Read sentences from files' >> beam.io.ReadFromText(
file_pattern=args.data_dir)
| 'Batch elements' >> util.BatchElements(
min_batch_size=args.batch_size, max_batch_size=args.batch_size)
| 'Generate embeddings' >> beam.Map(
generate_embeddings, args.module_url, args.random_projection_matrix)
| 'Encode to tf example' >> beam.FlatMap(to_tf_example)
| 'Write to TFRecords files' >> beam.io.WriteToTFRecord(
file_path_prefix='{}/emb'.format(args.output_dir),
file_name_suffix='.tfrecords')
)
יצירת מטריצת משקל הקרנה אקראית
הקרנה אקראית היא טכניקה פשוטה אך רבת עוצמה המשמשת להפחתת הממדיות של קבוצה של נקודות הנמצאות במרחב האוקלידי. לרקע תיאורטי, ראה הלמה של ג'ונסון-לינדנשטראוס .
צמצום הממדיות של ההטמעות באמצעות הקרנה אקראית פירושה פחות זמן הדרוש לבנות ולשאול את אינדקס ANN.
במדריך זה אנו משתמשים בהקרנה אקראית גאוסית מספריית Scikit-learn .
def generate_random_projection_weights(original_dim, projected_dim):
random_projection_matrix = None
random_projection_matrix = gaussian_random_matrix(
n_components=projected_dim, n_features=original_dim).T
print("A Gaussian random weight matrix was creates with shape of {}".format(random_projection_matrix.shape))
print('Storing random projection matrix to disk...')
with open('random_projection_matrix', 'wb') as handle:
pickle.dump(random_projection_matrix,
handle, protocol=pickle.HIGHEST_PROTOCOL)
return random_projection_matrix
הגדר פרמטרים
אם ברצונך לבנות אינדקס באמצעות שטח ההטמעה המקורי ללא הקרנה אקראית, הגדר את הפרמטר projected_dim
ל- None
. שים לב שזה יאט את שלב האינדקס עבור הטבעות במידות גבוהות.
module_url = 'https://tfhub.dev/google/nnlm-en-dim128/2'
projected_dim = 64
הפעל צינור
import tempfile
output_dir = tempfile.mkdtemp()
original_dim = hub.load(module_url)(['']).shape[1]
random_projection_matrix = None
if projected_dim:
random_projection_matrix = generate_random_projection_weights(
original_dim, projected_dim)
args = {
'job_name': 'hub2emb-{}'.format(datetime.utcnow().strftime('%y%m%d-%H%M%S')),
'runner': 'DirectRunner',
'batch_size': 1024,
'data_dir': 'corpus/*.txt',
'output_dir': output_dir,
'module_url': module_url,
'random_projection_matrix': random_projection_matrix,
}
print("Pipeline args are set.")
args
A Gaussian random weight matrix was creates with shape of (128, 64) Storing random projection matrix to disk... Pipeline args are set. /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/sklearn/utils/deprecation.py:86: FutureWarning: Function gaussian_random_matrix is deprecated; gaussian_random_matrix is deprecated in 0.22 and will be removed in version 0.24. warnings.warn(msg, category=FutureWarning) {'job_name': 'hub2emb-210107-125029', 'runner': 'DirectRunner', 'batch_size': 1024, 'data_dir': 'corpus/*.txt', 'output_dir': '/tmp/tmp0g361gzp', 'module_url': 'https://tfhub.dev/google/nnlm-en-dim128/2', 'random_projection_matrix': array([[-0.1349755 , -0.12082699, 0.07092581, ..., -0.02680793, -0.0459312 , -0.20462361], [-0.06197901, 0.01832142, 0.21362496, ..., 0.06641898, 0.14553738, -0.117217 ], [ 0.03452009, 0.14239163, 0.01371371, ..., 0.10422342, 0.02966668, -0.07094185], ..., [ 0.03384223, 0.05102025, 0.01941788, ..., -0.07500625, 0.09584965, -0.08593636], [ 0.11010087, -0.10597793, 0.06668758, ..., -0.0518654 , -0.14681441, 0.08449293], [ 0.26909502, -0.0291555 , 0.04305639, ..., -0.02295843, 0.1164921 , -0.04828371]])}
print("Running pipeline...")
%time run_hub2emb(args)
print("Pipeline is done.")
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features. Running pipeline... Warning:tensorflow:5 out of the last 5 calls to <function recreate_function.<locals>.restored_function_body at 0x7efcac3599d8> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. Warning:tensorflow:5 out of the last 5 calls to <function recreate_function.<locals>.restored_function_body at 0x7efcac3599d8> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. Warning:tensorflow:6 out of the last 6 calls to <function recreate_function.<locals>.restored_function_body at 0x7efcac475598> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. Warning:tensorflow:6 out of the last 6 calls to <function recreate_function.<locals>.restored_function_body at 0x7efcac475598> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. CPU times: user 9min 4s, sys: 10min 14s, total: 19min 19s Wall time: 2min 30s Pipeline is done.
ls {output_dir}
emb-00000-of-00001.tfrecords
קרא כמה מההטבעות שנוצרו...
embed_file = os.path.join(output_dir, 'emb-00000-of-00001.tfrecords')
sample = 5
# Create a description of the features.
feature_description = {
'text': tf.io.FixedLenFeature([], tf.string),
'embedding': tf.io.FixedLenFeature([projected_dim], tf.float32)
}
def _parse_example(example):
# Parse the input `tf.Example` proto using the dictionary above.
return tf.io.parse_single_example(example, feature_description)
dataset = tf.data.TFRecordDataset(embed_file)
for record in dataset.take(sample).map(_parse_example):
print("{}: {}".format(record['text'].numpy().decode('utf-8'), record['embedding'].numpy()[:10]))
headline_text: [ 0.07743962 -0.10065071 -0.03604915 0.03902601 0.02538098 -0.01991337 -0.11972483 0.03102058 0.16498186 -0.04299153] aba decides against community broadcasting licence: [ 0.02420221 -0.07736929 0.05655728 -0.18739551 0.11344934 0.12652674 -0.18189304 0.00422473 0.13149698 0.01910412] act fire witnesses must be aware of defamation: [-0.17413895 -0.05418579 0.07769868 0.05096476 0.08622053 0.33112594 0.04067763 0.00448784 0.15882017 0.33829722] a g calls for infrastructure protection summit: [ 0.16939437 -0.18585566 -0.14201084 -0.21779229 -0.1374832 0.14933842 -0.19583155 0.12921487 0.09811856 0.099967 ] air nz staff in aust strike for pay rise: [ 0.0230642 -0.03269081 0.18271443 0.23761444 -0.01575144 0.06109515 -0.01963143 -0.05211507 0.06050447 -0.20023327]
3. בניית אינדקס ANN עבור ההטמעות
ANNOY (Approximate Nearest Neighbors Oh Yeah) היא ספריית C++ עם כריכות Python לחיפוש נקודות במרחב הקרובות לנקודת שאילתה נתונה. זה גם יוצר מבני נתונים גדולים המבוססים על קבצים לקריאה בלבד הממופים לתוך הזיכרון. הוא נבנה ומשמש את Spotify להמלצות מוזיקה. אם אתה מעוניין אתה יכול לשחק יחד עם אלטרנטיבות אחרות ל-ANNOY כמו NGT , FAISS וכו'.
def build_index(embedding_files_pattern, index_filename, vector_length,
metric='angular', num_trees=100):
'''Builds an ANNOY index'''
annoy_index = annoy.AnnoyIndex(vector_length, metric=metric)
# Mapping between the item and its identifier in the index
mapping = {}
embed_files = tf.io.gfile.glob(embedding_files_pattern)
num_files = len(embed_files)
print('Found {} embedding file(s).'.format(num_files))
item_counter = 0
for i, embed_file in enumerate(embed_files):
print('Loading embeddings in file {} of {}...'.format(i+1, num_files))
dataset = tf.data.TFRecordDataset(embed_file)
for record in dataset.map(_parse_example):
text = record['text'].numpy().decode("utf-8")
embedding = record['embedding'].numpy()
mapping[item_counter] = text
annoy_index.add_item(item_counter, embedding)
item_counter += 1
if item_counter % 100000 == 0:
print('{} items loaded to the index'.format(item_counter))
print('A total of {} items added to the index'.format(item_counter))
print('Building the index with {} trees...'.format(num_trees))
annoy_index.build(n_trees=num_trees)
print('Index is successfully built.')
print('Saving index to disk...')
annoy_index.save(index_filename)
print('Index is saved to disk.')
print("Index file size: {} GB".format(
round(os.path.getsize(index_filename) / float(1024 ** 3), 2)))
annoy_index.unload()
print('Saving mapping to disk...')
with open(index_filename + '.mapping', 'wb') as handle:
pickle.dump(mapping, handle, protocol=pickle.HIGHEST_PROTOCOL)
print('Mapping is saved to disk.')
print("Mapping file size: {} MB".format(
round(os.path.getsize(index_filename + '.mapping') / float(1024 ** 2), 2)))
embedding_files = "{}/emb-*.tfrecords".format(output_dir)
embedding_dimension = projected_dim
index_filename = "index"
!rm {index_filename}
!rm {index_filename}.mapping
%time build_index(embedding_files, index_filename, embedding_dimension)
rm: cannot remove 'index': No such file or directory rm: cannot remove 'index.mapping': No such file or directory Found 1 embedding file(s). Loading embeddings in file 1 of 1... 100000 items loaded to the index 200000 items loaded to the index 300000 items loaded to the index 400000 items loaded to the index 500000 items loaded to the index 600000 items loaded to the index 700000 items loaded to the index 800000 items loaded to the index 900000 items loaded to the index 1000000 items loaded to the index 1100000 items loaded to the index A total of 1103664 items added to the index Building the index with 100 trees... Index is successfully built. Saving index to disk... Index is saved to disk. Index file size: 1.61 GB Saving mapping to disk... Mapping is saved to disk. Mapping file size: 50.61 MB CPU times: user 9min 54s, sys: 53.9 s, total: 10min 48s Wall time: 5min 5s
ls
corpus random_projection_matrix index raw.tsv index.mapping tf2_semantic_approximate_nearest_neighbors.ipynb
4. השתמש באינדקס להתאמת דמיון
כעת אנו יכולים להשתמש באינדקס ANN כדי למצוא כותרות חדשות שקרובות מבחינה סמנטית לשאילתת קלט.
טען את האינדקס ואת קובצי המיפוי
index = annoy.AnnoyIndex(embedding_dimension)
index.load(index_filename, prefault=True)
print('Annoy index is loaded.')
with open(index_filename + '.mapping', 'rb') as handle:
mapping = pickle.load(handle)
print('Mapping file is loaded.')
Annoy index is loaded. /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/ipykernel_launcher.py:1: FutureWarning: The default argument for metric will be removed in future version of Annoy. Please pass metric='angular' explicitly. """Entry point for launching an IPython kernel. Mapping file is loaded.
שיטת התאמת דמיון
def find_similar_items(embedding, num_matches=5):
'''Finds similar items to a given embedding in the ANN index'''
ids = index.get_nns_by_vector(
embedding, num_matches, search_k=-1, include_distances=False)
items = [mapping[i] for i in ids]
return items
חלץ הטמעה משאילתה נתונה
# Load the TF-Hub module
print("Loading the TF-Hub module...")
%time embed_fn = hub.load(module_url)
print("TF-Hub module is loaded.")
random_projection_matrix = None
if os.path.exists('random_projection_matrix'):
print("Loading random projection matrix...")
with open('random_projection_matrix', 'rb') as handle:
random_projection_matrix = pickle.load(handle)
print('random projection matrix is loaded.')
def extract_embeddings(query):
'''Generates the embedding for the query'''
query_embedding = embed_fn([query])[0].numpy()
if random_projection_matrix is not None:
query_embedding = query_embedding.dot(random_projection_matrix)
return query_embedding
Loading the TF-Hub module... CPU times: user 757 ms, sys: 619 ms, total: 1.38 s Wall time: 1.37 s TF-Hub module is loaded. Loading random projection matrix... random projection matrix is loaded.
extract_embeddings("Hello Machine Learning!")[:10]
array([ 0.12164804, 0.0162079 , -0.15466002, -0.14580576, 0.03926325, -0.10124508, -0.1333948 , 0.0515029 , -0.14688903, -0.09971556])
הזן שאילתה כדי למצוא את הפריטים הדומים ביותר
query = "confronting global challenges"
print("Generating embedding for the query...")
%time query_embedding = extract_embeddings(query)
print("")
print("Finding relevant items in the index...")
%time items = find_similar_items(query_embedding, 10)
print("")
print("Results:")
print("=========")
for item in items:
print(item)
Generating embedding for the query... CPU times: user 5.18 ms, sys: 596 µs, total: 5.77 ms Wall time: 2.19 ms Finding relevant items in the index... CPU times: user 555 µs, sys: 327 µs, total: 882 µs Wall time: 601 µs Results: ========= confronting global challenges emerging nations to help struggling global economy g7 warns of increasing global economic crisis world struggling to cope with global terrorism companies health to struggle amid global crisis external risks biggest threat to economy asian giants unite to tackle global crisis g7 ministers warn of slowing global growth experts to discuss global warming threat scientists warn of growing natural disasters
רוצה ללמוד עוד?
תוכל ללמוד עוד על TensorFlow בכתובת tensorflow.org ולראות את התיעוד של TF-Hub API בכתובת tensorflow.org/hub . מצא מודולים זמינים של TensorFlow Hub ב- tfhub.dev, כולל מודולים נוספים להטמעת טקסט ומודולים וקטוריים של תכונת תמונה.
בדוק גם את קורס ההתרסקות של Machine Learning , שהוא המבוא המהיר והמעשי של גוגל ללמידת מכונה.