নির্বিচারে শৈলীর জন্য দ্রুত শৈলী স্থানান্তর

মডেল কোডের উপর ভিত্তি করে ম্যাজেন্টা ও প্রকাশনা:

একটি রিয়েল-টাইম কাঠামো, নির্বিচারে নিউরাল শৈল্পিক stylization নেটওয়ার্কের এক্সপ্লোরিংGolnaz Ghiasi, Honglak লি, Manjunath Kudlur, ভিনসেন্ট Dumoulin, জোনাথন Shlens ব্রিটিশ মেশিন ভিশন কনফারেন্স (BMVC), 2017 এর প্রসিডিংস।

সেটআপ

আসুন TF2 এবং সমস্ত প্রাসঙ্গিক নির্ভরতা আমদানি করে শুরু করি।

import functools
import os

from matplotlib import gridspec
import matplotlib.pylab as plt
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub

print("TF Version: ", tf.__version__)
print("TF Hub version: ", hub.__version__)
print("Eager mode enabled: ", tf.executing_eagerly())
print("GPU available: ", tf.config.list_physical_devices('GPU'))
TF Version:  2.7.0
TF Hub version:  0.12.0
Eager mode enabled:  True
GPU available:  [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
# @title Define image loading and visualization functions  { display-mode: "form" }

def crop_center(image):
 
"""Returns a cropped square image."""
  shape
= image.shape
  new_shape
= min(shape[1], shape[2])
  offset_y
= max(shape[1] - shape[2], 0) // 2
  offset_x
= max(shape[2] - shape[1], 0) // 2
  image
= tf.image.crop_to_bounding_box(
      image
, offset_y, offset_x, new_shape, new_shape)
 
return image

@functools.lru_cache(maxsize=None)
def load_image(image_url, image_size=(256, 256), preserve_aspect_ratio=True):
 
"""Loads and preprocesses images."""
 
# Cache image file locally.
  image_path
= tf.keras.utils.get_file(os.path.basename(image_url)[-128:], image_url)
 
# Load and convert to float32 numpy array, add batch dimension, and normalize to range [0, 1].
  img
= tf.io.decode_image(
      tf
.io.read_file(image_path),
      channels
=3, dtype=tf.float32)[tf.newaxis, ...]
  img
= crop_center(img)
  img
= tf.image.resize(img, image_size, preserve_aspect_ratio=True)
 
return img

def show_n(images, titles=('',)):
  n
= len(images)
  image_sizes
= [image.shape[1] for image in images]
  w
= (image_sizes[0] * 6) // 320
  plt
.figure(figsize=(w * n, w))
  gs
= gridspec.GridSpec(1, n, width_ratios=image_sizes)
 
for i in range(n):
    plt
.subplot(gs[i])
    plt
.imshow(images[i][0], aspect='equal')
    plt
.axis('off')
    plt
.title(titles[i] if len(titles) > i else '')
  plt
.show()

এর সাথে খেলার জন্য কিছু ছবি পেতে দিন.

# @title Load example images  { display-mode: "form" }

content_image_url
= 'https://upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Golden_Gate_Bridge_from_Battery_Spencer.jpg/640px-Golden_Gate_Bridge_from_Battery_Spencer.jpg'  # @param {type:"string"}
style_image_url
= 'https://upload.wikimedia.org/wikipedia/commons/0/0a/The_Great_Wave_off_Kanagawa.jpg'  # @param {type:"string"}
output_image_size
= 384  # @param {type:"integer"}

# The content image size can be arbitrary.
content_img_size
= (output_image_size, output_image_size)
# The style prediction model was trained with image size 256 and it's the
# recommended image size for the style image (though, other sizes work as
# well but will lead to different results).
style_img_size
= (256, 256)  # Recommended to keep it at 256.

content_image
= load_image(content_image_url, content_img_size)
style_image
= load_image(style_image_url, style_img_size)
style_image
= tf.nn.avg_pool(style_image, ksize=[3,3], strides=[1,1], padding='SAME')
show_n
([content_image, style_image], ['Content image', 'Style image'])
Downloading data from https://upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Golden_Gate_Bridge_from_Battery_Spencer.jpg/640px-Golden_Gate_Bridge_from_Battery_Spencer.jpg
65536/58102 [=================================] - 0s 1us/step
73728/58102 [======================================] - 0s 1us/step
Downloading data from https://upload.wikimedia.org/wikipedia/commons/0/0a/The_Great_Wave_off_Kanagawa.jpg
2686976/2684586 [==============================] - 0s 0us/step
2695168/2684586 [==============================] - 0s 0us/step

png

TF হাব মডিউল আমদানি করুন

# Load TF Hub module.

hub_handle
= 'https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2'
hub_module
= hub.load(hub_handle)

ইমেজ স্টাইলাইজেশনের জন্য এই হাব মডিউলটির স্বাক্ষর হল:

outputs = hub_module(content_image, style_image)
stylized_image
= outputs[0]

কোথায় content_image , style_image এবং stylized_image আকার 4-ডি Tensors হবে বলে আশা করা হয় [batch_size, image_height, image_width, 3]

বর্তমান উদাহরণে আমরা শুধুমাত্র একক ছবি প্রদান করি এবং সেইজন্য ব্যাচের মাত্রা হল 1, কিন্তু একই সময়ে আরও ছবি প্রক্রিয়া করতে একই মডিউল ব্যবহার করতে পারেন।

ইমেজ ইনপুট এবং আউটপুট মান পরিসীমা হতে হবে [0, 1].

বিষয়বস্তু এবং শৈলী চিত্রের আকার মেলে না। আউটপুট ইমেজ আকৃতি কন্টেন্ট ইমেজ আকৃতি হিসাবে একই.

চিত্র শৈলী প্রদর্শন

# Stylize content image with given style image.
# This is pretty fast within a few milliseconds on a GPU.

outputs
= hub_module(tf.constant(content_image), tf.constant(style_image))
stylized_image
= outputs[0]
# Visualize input images and the generated stylized image.

show_n
([content_image, style_image, stylized_image], titles=['Original content image', 'Style image', 'Stylized image'])

png

আরো ইমেজ এটি চেষ্টা করা যাক

# @title To Run: Load more images { display-mode: "form" }

content_urls
= dict(
  sea_turtle
='https://upload.wikimedia.org/wikipedia/commons/d/d7/Green_Sea_Turtle_grazing_seagrass.jpg',
  tuebingen
='https://upload.wikimedia.org/wikipedia/commons/0/00/Tuebingen_Neckarfront.jpg',
  grace_hopper
='https://storage.googleapis.com/download.tensorflow.org/example_images/grace_hopper.jpg',
 
)
style_urls
= dict(
  kanagawa_great_wave
='https://upload.wikimedia.org/wikipedia/commons/0/0a/The_Great_Wave_off_Kanagawa.jpg',
  kandinsky_composition_7
='https://upload.wikimedia.org/wikipedia/commons/b/b4/Vassily_Kandinsky%2C_1913_-_Composition_7.jpg',
  hubble_pillars_of_creation
='https://upload.wikimedia.org/wikipedia/commons/6/68/Pillars_of_creation_2014_HST_WFC3-UVIS_full-res_denoised.jpg',
  van_gogh_starry_night
='https://upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg/1024px-Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg',
  turner_nantes
='https://upload.wikimedia.org/wikipedia/commons/b/b7/JMW_Turner_-_Nantes_from_the_Ile_Feydeau.jpg',
  munch_scream
='https://upload.wikimedia.org/wikipedia/commons/c/c5/Edvard_Munch%2C_1893%2C_The_Scream%2C_oil%2C_tempera_and_pastel_on_cardboard%2C_91_x_73_cm%2C_National_Gallery_of_Norway.jpg',
  picasso_demoiselles_avignon
='https://upload.wikimedia.org/wikipedia/en/4/4c/Les_Demoiselles_d%27Avignon.jpg',
  picasso_violin
='https://upload.wikimedia.org/wikipedia/en/3/3c/Pablo_Picasso%2C_1911-12%2C_Violon_%28Violin%29%2C_oil_on_canvas%2C_Kr%C3%B6ller-M%C3%BCller_Museum%2C_Otterlo%2C_Netherlands.jpg',
  picasso_bottle_of_rum
='https://upload.wikimedia.org/wikipedia/en/7/7f/Pablo_Picasso%2C_1911%2C_Still_Life_with_a_Bottle_of_Rum%2C_oil_on_canvas%2C_61.3_x_50.5_cm%2C_Metropolitan_Museum_of_Art%2C_New_York.jpg',
  fire
='https://upload.wikimedia.org/wikipedia/commons/3/36/Large_bonfire.jpg',
  derkovits_woman_head
='https://upload.wikimedia.org/wikipedia/commons/0/0d/Derkovits_Gyula_Woman_head_1922.jpg',
  amadeo_style_life
='https://upload.wikimedia.org/wikipedia/commons/8/8e/Untitled_%28Still_life%29_%281913%29_-_Amadeo_Souza-Cardoso_%281887-1918%29_%2817385824283%29.jpg',
  derkovtis_talig
='https://upload.wikimedia.org/wikipedia/commons/3/37/Derkovits_Gyula_Talig%C3%A1s_1920.jpg',
  amadeo_cardoso
='https://upload.wikimedia.org/wikipedia/commons/7/7d/Amadeo_de_Souza-Cardoso%2C_1915_-_Landscape_with_black_figure.jpg'
)

content_image_size
= 384
style_image_size
= 256
content_images
= {k: load_image(v, (content_image_size, content_image_size)) for k, v in content_urls.items()}
style_images
= {k: load_image(v, (style_image_size, style_image_size)) for k, v in style_urls.items()}
style_images
= {k: tf.nn.avg_pool(style_image, ksize=[3,3], strides=[1,1], padding='SAME') for k, style_image in style_images.items()}
Downloading data from https://upload.wikimedia.org/wikipedia/commons/d/d7/Green_Sea_Turtle_grazing_seagrass.jpg
3178496/3170828 [==============================] - 0s 0us/step
3186688/3170828 [==============================] - 0s 0us/step
Downloading data from https://upload.wikimedia.org/wikipedia/commons/0/00/Tuebingen_Neckarfront.jpg
409600/406531 [==============================] - 0s 0us/step
417792/406531 [==============================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/download.tensorflow.org/example_images/grace_hopper.jpg
65536/61306 [================================] - 0s 0us/step
73728/61306 [====================================] - 0s 0us/step
Downloading data from https://upload.wikimedia.org/wikipedia/commons/b/b4/Vassily_Kandinsky%2C_1913_-_Composition_7.jpg
196608/195196 [==============================] - 0s 1us/step
204800/195196 [===============================] - 0s 1us/step
Downloading data from https://upload.wikimedia.org/wikipedia/commons/6/68/Pillars_of_creation_2014_HST_WFC3-UVIS_full-res_denoised.jpg
46931968/46930988 [==============================] - 2s 0us/step
46940160/46930988 [==============================] - 2s 0us/step
Downloading data from https://upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg/1024px-Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg
401408/396423 [==============================] - 0s 0us/step
409600/396423 [==============================] - 0s 0us/step
Downloading data from https://upload.wikimedia.org/wikipedia/commons/b/b7/JMW_Turner_-_Nantes_from_the_Ile_Feydeau.jpg
147456/144340 [==============================] - 0s 1us/step
155648/144340 [================================] - 0s 1us/step
Downloading data from https://upload.wikimedia.org/wikipedia/commons/c/c5/Edvard_Munch%2C_1893%2C_The_Scream%2C_oil%2C_tempera_and_pastel_on_cardboard%2C_91_x_73_cm%2C_National_Gallery_of_Norway.jpg
11403264/11403121 [==============================] - 1s 0us/step
11411456/11403121 [==============================] - 1s 0us/step
Downloading data from https://upload.wikimedia.org/wikipedia/en/4/4c/Les_Demoiselles_d%27Avignon.jpg
2908160/2905099 [==============================] - 0s 0us/step
2916352/2905099 [==============================] - 0s 0us/step
Downloading data from https://upload.wikimedia.org/wikipedia/en/3/3c/Pablo_Picasso%2C_1911-12%2C_Violon_%28Violin%29%2C_oil_on_canvas%2C_Kr%C3%B6ller-M%C3%BCller_Museum%2C_Otterlo%2C_Netherlands.jpg
1236992/1234199 [==============================] - 0s 0us/step
1245184/1234199 [==============================] - 0s 0us/step
Downloading data from https://upload.wikimedia.org/wikipedia/en/7/7f/Pablo_Picasso%2C_1911%2C_Still_Life_with_a_Bottle_of_Rum%2C_oil_on_canvas%2C_61.3_x_50.5_cm%2C_Metropolitan_Museum_of_Art%2C_New_York.jpg
122880/120288 [==============================] - 0s 1us/step
131072/120288 [================================] - 0s 1us/step
Downloading data from https://upload.wikimedia.org/wikipedia/commons/3/36/Large_bonfire.jpg
139264/131604 [===============================] - 0s 1us/step
147456/131604 [=================================] - 0s 1us/step
Downloading data from https://upload.wikimedia.org/wikipedia/commons/0/0d/Derkovits_Gyula_Woman_head_1922.jpg
32768/32390 [==============================] - 0s 0us/step
40960/32390 [=====================================] - 0s 0us/step
Downloading data from https://upload.wikimedia.org/wikipedia/commons/8/8e/Untitled_%28Still_life%29_%281913%29_-_Amadeo_Souza-Cardoso_%281887-1918%29_%2817385824283%29.jpg
1916928/1914618 [==============================] - 0s 0us/step
1925120/1914618 [==============================] - 0s 0us/step
Downloading data from https://upload.wikimedia.org/wikipedia/commons/3/37/Derkovits_Gyula_Talig%C3%A1s_1920.jpg
40960/40620 [==============================] - 0s 0us/step
49152/40620 [====================================] - 0s 0us/step
Downloading data from https://upload.wikimedia.org/wikipedia/commons/7/7d/Amadeo_de_Souza-Cardoso%2C_1915_-_Landscape_with_black_figure.jpg
73728/66306 [=================================] - 0s 1us/step
81920/66306 [=====================================] - 0s 1us/step

প্রধান বিষয়বস্তুর চিত্র এবং আপনি যে শৈলী ব্যবহার করতে চান তা উল্লেখ করুন।

content_name = 'sea_turtle'  # @param ['sea_turtle', 'tuebingen', 'grace_hopper']
style_name
= 'munch_scream'  # @param ['kanagawa_great_wave', 'kandinsky_composition_7', 'hubble_pillars_of_creation', 'van_gogh_starry_night', 'turner_nantes', 'munch_scream', 'picasso_demoiselles_avignon', 'picasso_violin', 'picasso_bottle_of_rum', 'fire', 'derkovits_woman_head', 'amadeo_style_life', 'derkovtis_talig', 'amadeo_cardoso']

stylized_image
= hub_module(tf.constant(content_images[content_name]),
                            tf
.constant(style_images[style_name]))[0]

show_n
([content_images[content_name], style_images[style_name], stylized_image],
       titles
=['Original content image', 'Style image', 'Stylized image'])

png