TensorFlow.org에서 보기 | Google Colab에서 실행 | GitHub에서소스 보기 | 노트북 다운로드 | TF Hub 모델보기 |
본 내용은 magenta의 모델 코드와 다음 발행물에 기초합니다.
Exploring the structure of a real-time, arbitrary neural artistic stylization network(실시간 임의 신경 예술적 스타일화 네트워크의 구조 탐색). Golnaz Ghiasi, Honglak Lee, Manjunath Kudlur, Vincent Dumoulin, Jonathon Shlens, Proceedings of the British Machine Vision Conference (BMVC), 2017.
설정
TF2 및 관련된 모든 종속성을 가져오는 것으로 시작합니다.
import functools
import os
from matplotlib import gridspec
import matplotlib.pylab as plt
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
print("TF Version: ", tf.__version__)
print("TF Hub version: ", hub.__version__)
print("Eager mode enabled: ", tf.executing_eagerly())
print("GPU available: ", tf.config.list_physical_devices('GPU'))
2022-12-14 22:17:09.394415: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory 2022-12-14 22:17:09.394519: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory 2022-12-14 22:17:09.394529: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. TF Version: 2.11.0 TF Hub version: 0.12.0 Eager mode enabled: True GPU available: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU'), PhysicalDevice(name='/physical_device:GPU:1', device_type='GPU'), PhysicalDevice(name='/physical_device:GPU:2', device_type='GPU'), PhysicalDevice(name='/physical_device:GPU:3', device_type='GPU')]
# @title Define image loading and visualization functions { display-mode: "form" }
def crop_center(image):
"""Returns a cropped square image."""
shape = image.shape
new_shape = min(shape[1], shape[2])
offset_y = max(shape[1] - shape[2], 0) // 2
offset_x = max(shape[2] - shape[1], 0) // 2
image = tf.image.crop_to_bounding_box(
image, offset_y, offset_x, new_shape, new_shape)
return image
@functools.lru_cache(maxsize=None)
def load_image(image_url, image_size=(256, 256), preserve_aspect_ratio=True):
"""Loads and preprocesses images."""
# Cache image file locally.
image_path = tf.keras.utils.get_file(os.path.basename(image_url)[-128:], image_url)
# Load and convert to float32 numpy array, add batch dimension, and normalize to range [0, 1].
img = tf.io.decode_image(
tf.io.read_file(image_path),
channels=3, dtype=tf.float32)[tf.newaxis, ...]
img = crop_center(img)
img = tf.image.resize(img, image_size, preserve_aspect_ratio=True)
return img
def show_n(images, titles=('',)):
n = len(images)
image_sizes = [image.shape[1] for image in images]
w = (image_sizes[0] * 6) // 320
plt.figure(figsize=(w * n, w))
gs = gridspec.GridSpec(1, n, width_ratios=image_sizes)
for i in range(n):
plt.subplot(gs[i])
plt.imshow(images[i][0], aspect='equal')
plt.axis('off')
plt.title(titles[i] if len(titles) > i else '')
plt.show()
작업에 이용할 수 있는 몇 가지 이미지도 함께 가져옵니다.
# @title Load example images { display-mode: "form" }
content_image_url = 'https://upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Golden_Gate_Bridge_from_Battery_Spencer.jpg/640px-Golden_Gate_Bridge_from_Battery_Spencer.jpg' # @param {type:"string"}
style_image_url = 'https://upload.wikimedia.org/wikipedia/commons/0/0a/The_Great_Wave_off_Kanagawa.jpg' # @param {type:"string"}
output_image_size = 384 # @param {type:"integer"}
# The content image size can be arbitrary.
content_img_size = (output_image_size, output_image_size)
# The style prediction model was trained with image size 256 and it's the
# recommended image size for the style image (though, other sizes work as
# well but will lead to different results).
style_img_size = (256, 256) # Recommended to keep it at 256.
content_image = load_image(content_image_url, content_img_size)
style_image = load_image(style_image_url, style_img_size)
style_image = tf.nn.avg_pool(style_image, ksize=[3,3], strides=[1,1], padding='SAME')
show_n([content_image, style_image], ['Content image', 'Style image'])
Downloading data from https://upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Golden_Gate_Bridge_from_Battery_Spencer.jpg/640px-Golden_Gate_Bridge_from_Battery_Spencer.jpg 71406/71406 [==============================] - 0s 1us/step Downloading data from https://upload.wikimedia.org/wikipedia/commons/0/0a/The_Great_Wave_off_Kanagawa.jpg 2684586/2684586 [==============================] - 0s 0us/step
TF Hub 모듈 가져오기
# Load TF Hub module.
hub_handle = 'https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2'
hub_module = hub.load(hub_handle)
이미지 스타일화를 위한 이 허브 모듈의 서명은 다음과 같습니다.
outputs = hub_module(content_image, style_image) stylized_image = outputs[0]
content_image
, style_image
, stylized_image
는 형상이 [batch_size, image_height, image_width, 3]
인 4-D 텐서로 예상됩니다.
현재 예제에서는 단일 이미지만 제공하므로 배치 차원은 1이지만 같은 모듈을 사용하여 더 많은 이미지를 동시에 처리할 수 있습니다.
이미지의 입력 및 출력 값은 [0, 1] 범위에 있어야 합니다.
콘텐츠 형상과 스타일 이미지가 일치할 필요는 없습니다. 출력 이미지 형상은 콘텐츠 이미지 형상과 같습니다.
이미지 스타일화 시연하기
# Stylize content image with given style image.
# This is pretty fast within a few milliseconds on a GPU.
outputs = hub_module(tf.constant(content_image), tf.constant(style_image))
stylized_image = outputs[0]
# Visualize input images and the generated stylized image.
show_n([content_image, style_image, stylized_image], titles=['Original content image', 'Style image', 'Stylized image'])
더 많은 이미지에 시도하기
# @title To Run: Load more images { display-mode: "form" }
content_urls = dict(
sea_turtle='https://upload.wikimedia.org/wikipedia/commons/d/d7/Green_Sea_Turtle_grazing_seagrass.jpg',
tuebingen='https://upload.wikimedia.org/wikipedia/commons/0/00/Tuebingen_Neckarfront.jpg',
grace_hopper='https://storage.googleapis.com/download.tensorflow.org/example_images/grace_hopper.jpg',
)
style_urls = dict(
kanagawa_great_wave='https://upload.wikimedia.org/wikipedia/commons/0/0a/The_Great_Wave_off_Kanagawa.jpg',
kandinsky_composition_7='https://upload.wikimedia.org/wikipedia/commons/b/b4/Vassily_Kandinsky%2C_1913_-_Composition_7.jpg',
hubble_pillars_of_creation='https://upload.wikimedia.org/wikipedia/commons/6/68/Pillars_of_creation_2014_HST_WFC3-UVIS_full-res_denoised.jpg',
van_gogh_starry_night='https://upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg/1024px-Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg',
turner_nantes='https://upload.wikimedia.org/wikipedia/commons/b/b7/JMW_Turner_-_Nantes_from_the_Ile_Feydeau.jpg',
munch_scream='https://upload.wikimedia.org/wikipedia/commons/c/c5/Edvard_Munch%2C_1893%2C_The_Scream%2C_oil%2C_tempera_and_pastel_on_cardboard%2C_91_x_73_cm%2C_National_Gallery_of_Norway.jpg',
picasso_demoiselles_avignon='https://upload.wikimedia.org/wikipedia/en/4/4c/Les_Demoiselles_d%27Avignon.jpg',
picasso_violin='https://upload.wikimedia.org/wikipedia/en/3/3c/Pablo_Picasso%2C_1911-12%2C_Violon_%28Violin%29%2C_oil_on_canvas%2C_Kr%C3%B6ller-M%C3%BCller_Museum%2C_Otterlo%2C_Netherlands.jpg',
picasso_bottle_of_rum='https://upload.wikimedia.org/wikipedia/en/7/7f/Pablo_Picasso%2C_1911%2C_Still_Life_with_a_Bottle_of_Rum%2C_oil_on_canvas%2C_61.3_x_50.5_cm%2C_Metropolitan_Museum_of_Art%2C_New_York.jpg',
fire='https://upload.wikimedia.org/wikipedia/commons/3/36/Large_bonfire.jpg',
derkovits_woman_head='https://upload.wikimedia.org/wikipedia/commons/0/0d/Derkovits_Gyula_Woman_head_1922.jpg',
amadeo_style_life='https://upload.wikimedia.org/wikipedia/commons/8/8e/Untitled_%28Still_life%29_%281913%29_-_Amadeo_Souza-Cardoso_%281887-1918%29_%2817385824283%29.jpg',
derkovtis_talig='https://upload.wikimedia.org/wikipedia/commons/3/37/Derkovits_Gyula_Talig%C3%A1s_1920.jpg',
amadeo_cardoso='https://upload.wikimedia.org/wikipedia/commons/7/7d/Amadeo_de_Souza-Cardoso%2C_1915_-_Landscape_with_black_figure.jpg'
)
content_image_size = 384
style_image_size = 256
content_images = {k: load_image(v, (content_image_size, content_image_size)) for k, v in content_urls.items()}
style_images = {k: load_image(v, (style_image_size, style_image_size)) for k, v in style_urls.items()}
style_images = {k: tf.nn.avg_pool(style_image, ksize=[3,3], strides=[1,1], padding='SAME') for k, style_image in style_images.items()}
Downloading data from https://upload.wikimedia.org/wikipedia/commons/d/d7/Green_Sea_Turtle_grazing_seagrass.jpg 3170828/3170828 [==============================] - 0s 0us/step Downloading data from https://upload.wikimedia.org/wikipedia/commons/0/00/Tuebingen_Neckarfront.jpg 406531/406531 [==============================] - 0s 0us/step Downloading data from https://storage.googleapis.com/download.tensorflow.org/example_images/grace_hopper.jpg 61306/61306 [==============================] - 0s 0us/step Downloading data from https://upload.wikimedia.org/wikipedia/commons/b/b4/Vassily_Kandinsky%2C_1913_-_Composition_7.jpg 195196/195196 [==============================] - 0s 0us/step Downloading data from https://upload.wikimedia.org/wikipedia/commons/6/68/Pillars_of_creation_2014_HST_WFC3-UVIS_full-res_denoised.jpg 46930988/46930988 [==============================] - 2s 0us/step Downloading data from https://upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg/1024px-Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg 396423/396423 [==============================] - 0s 0us/step Downloading data from https://upload.wikimedia.org/wikipedia/commons/b/b7/JMW_Turner_-_Nantes_from_the_Ile_Feydeau.jpg 144340/144340 [==============================] - 0s 1us/step Downloading data from https://upload.wikimedia.org/wikipedia/commons/c/c5/Edvard_Munch%2C_1893%2C_The_Scream%2C_oil%2C_tempera_and_pastel_on_cardboard%2C_91_x_73_cm%2C_National_Gallery_of_Norway.jpg 11403121/11403121 [==============================] - 0s 0us/step Downloading data from https://upload.wikimedia.org/wikipedia/en/4/4c/Les_Demoiselles_d%27Avignon.jpg 2905099/2905099 [==============================] - 0s 0us/step Downloading data from https://upload.wikimedia.org/wikipedia/en/3/3c/Pablo_Picasso%2C_1911-12%2C_Violon_%28Violin%29%2C_oil_on_canvas%2C_Kr%C3%B6ller-M%C3%BCller_Museum%2C_Otterlo%2C_Netherlands.jpg 1234199/1234199 [==============================] - 0s 0us/step Downloading data from https://upload.wikimedia.org/wikipedia/en/7/7f/Pablo_Picasso%2C_1911%2C_Still_Life_with_a_Bottle_of_Rum%2C_oil_on_canvas%2C_61.3_x_50.5_cm%2C_Metropolitan_Museum_of_Art%2C_New_York.jpg 120288/120288 [==============================] - 0s 1us/step Downloading data from https://upload.wikimedia.org/wikipedia/commons/3/36/Large_bonfire.jpg 131604/131604 [==============================] - 0s 1us/step Downloading data from https://upload.wikimedia.org/wikipedia/commons/0/0d/Derkovits_Gyula_Woman_head_1922.jpg 32390/32390 [==============================] - 0s 1us/step Downloading data from https://upload.wikimedia.org/wikipedia/commons/8/8e/Untitled_%28Still_life%29_%281913%29_-_Amadeo_Souza-Cardoso_%281887-1918%29_%2817385824283%29.jpg 1914618/1914618 [==============================] - 0s 0us/step Downloading data from https://upload.wikimedia.org/wikipedia/commons/3/37/Derkovits_Gyula_Talig%C3%A1s_1920.jpg 40620/40620 [==============================] - 0s 1us/step Downloading data from https://upload.wikimedia.org/wikipedia/commons/7/7d/Amadeo_de_Souza-Cardoso%2C_1915_-_Landscape_with_black_figure.jpg 66306/66306 [==============================] - 0s 1us/step
Specify the main content image and the style you want to use.
content_name = 'sea_turtle' # @param ['sea_turtle', 'tuebingen', 'grace_hopper']
style_name = 'munch_scream' # @param ['kanagawa_great_wave', 'kandinsky_composition_7', 'hubble_pillars_of_creation', 'van_gogh_starry_night', 'turner_nantes', 'munch_scream', 'picasso_demoiselles_avignon', 'picasso_violin', 'picasso_bottle_of_rum', 'fire', 'derkovits_woman_head', 'amadeo_style_life', 'derkovtis_talig', 'amadeo_cardoso']
stylized_image = hub_module(tf.constant(content_images[content_name]),
tf.constant(style_images[style_name]))[0]
show_n([content_images[content_name], style_images[style_name], stylized_image],
titles=['Original content image', 'Style image', 'Stylized image'])