نحوه حل مشکل در Kaggle با TF-Hub

مشاهده در TensorFlow.org در Google Colab اجرا شود در GitHub مشاهده کنید دانلود دفترچه یادداشت مدل TF Hub را ببینید

TF-توپی یک پلت فرم به اشتراک گذاشتن تخصص یادگیری ماشین بسته بندی شده در منابع قابل استفاده مجدد، ماژول ویژه قبل از آموزش دیده است. در این آموزش، ما از یک ماژول جاسازی متن TF-Hub برای آموزش یک طبقه‌بندی کننده احساسات ساده با دقت پایه معقول استفاده خواهیم کرد. سپس پیش‌بینی‌ها را به Kaggle ارسال می‌کنیم.

برای آموزش بیشتر در طبقه بندی متن با TF-توپی و مراحل بیشتر برای بهبود دقت و صحت، نگاهی به طبقه بندی متن با TF-توپی .

برپایی

pip install -q kaggle
import tensorflow as tf
import tensorflow_hub as hub
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import zipfile

from sklearn import model_selection

از آنجا که این آموزش با استفاده از یک مجموعه داده از Kaggle، آن نیاز به ایجاد یک API رمز برای حساب Kaggle خود را، و آپلود آن را به محیط زیست COLAB.

import os
import pathlib

# Upload the API token.
def get_kaggle():
  try:
    import kaggle
    return kaggle
  except OSError:
    pass

  token_file = pathlib.Path("~/.kaggle/kaggle.json").expanduser()
  token_file.parent.mkdir(exist_ok=True, parents=True)

  try:
    from google.colab import files
  except ImportError:
    raise ValueError("Could not find kaggle token.")

  uploaded = files.upload()
  token_content = uploaded.get('kaggle.json', None)
  if token_content:
    token_file.write_bytes(token_content)
    token_file.chmod(0o600)
  else:
    raise ValueError('Need a file named "kaggle.json"')

  import kaggle
  return kaggle


kaggle = get_kaggle()

شروع شدن

داده ها

ما سعی خواهد کرد برای حل تجزیه و تحلیل احساسات در فیلم بررسی کار از Kaggle. مجموعه داده شامل زیر عبارات نحوی نقدهای فیلم Rotten Tomatoes است. وظیفه این است که به برچسب عبارات به عنوان منفی یا مثبت در مقیاس از 1 تا 5.

شما باید قوانین رقابت قبول شما می توانید قبل از API برای دانلود اطلاعات استفاده کنید.

SENTIMENT_LABELS = [
    "negative", "somewhat negative", "neutral", "somewhat positive", "positive"
]

# Add a column with readable values representing the sentiment.
def add_readable_labels_column(df, sentiment_value_column):
  df["SentimentLabel"] = df[sentiment_value_column].replace(
      range(5), SENTIMENT_LABELS)

# Download data from Kaggle and create a DataFrame.
def load_data_from_zip(path):
  with zipfile.ZipFile(path, "r") as zip_ref:
    name = zip_ref.namelist()[0]
    with zip_ref.open(name) as zf:
      return pd.read_csv(zf, sep="\t", index_col=0)


# The data does not come with a validation set so we'll create one from the
# training set.
def get_data(competition, train_file, test_file, validation_set_ratio=0.1):
  data_path = pathlib.Path("data")
  kaggle.api.competition_download_files(competition, data_path)
  competition_path = (data_path/competition)
  competition_path.mkdir(exist_ok=True, parents=True)
  competition_zip_path = competition_path.with_suffix(".zip")

  with zipfile.ZipFile(competition_zip_path, "r") as zip_ref:
    zip_ref.extractall(competition_path)

  train_df = load_data_from_zip(competition_path/train_file)
  test_df = load_data_from_zip(competition_path/test_file)

  # Add a human readable label.
  add_readable_labels_column(train_df, "Sentiment")

  # We split by sentence ids, because we don't want to have phrases belonging
  # to the same sentence in both training and validation set.
  train_indices, validation_indices = model_selection.train_test_split(
      np.unique(train_df["SentenceId"]),
      test_size=validation_set_ratio,
      random_state=0)

  validation_df = train_df[train_df["SentenceId"].isin(validation_indices)]
  train_df = train_df[train_df["SentenceId"].isin(train_indices)]
  print("Split the training data into %d training and %d validation examples." %
        (len(train_df), len(validation_df)))

  return train_df, validation_df, test_df


train_df, validation_df, test_df = get_data(
    "sentiment-analysis-on-movie-reviews",
    "train.tsv.zip", "test.tsv.zip")
Split the training data into 140315 training and 15745 validation examples.
train_df.head(20)

آموزش یک مدل

class MyModel(tf.keras.Model):
  def __init__(self, hub_url):
    super().__init__()
    self.hub_url = hub_url
    self.embed = hub.load(self.hub_url).signatures['default']
    self.sequential = tf.keras.Sequential([
      tf.keras.layers.Dense(500),
      tf.keras.layers.Dense(100),
      tf.keras.layers.Dense(5),
    ])

  def call(self, inputs):
    phrases = inputs['Phrase'][:,0]
    embedding = 5*self.embed(phrases)['default']
    return self.sequential(embedding)

  def get_config(self):
    return {"hub_url":self.hub_url}
model = MyModel("https://tfhub.dev/google/nnlm-en-dim128/1")
model.compile(
    loss = tf.losses.SparseCategoricalCrossentropy(from_logits=True),
    optimizer=tf.optimizers.Adam(), 
    metrics = [tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy")])
history = model.fit(x=dict(train_df), y=train_df['Sentiment'],
          validation_data=(dict(validation_df), validation_df['Sentiment']),
          epochs = 25)
Epoch 1/25
4385/4385 [==============================] - 16s 3ms/step - loss: 1.0237 - accuracy: 0.5869 - val_loss: 1.0023 - val_accuracy: 0.5870
Epoch 2/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9995 - accuracy: 0.5941 - val_loss: 0.9903 - val_accuracy: 0.5952
Epoch 3/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9946 - accuracy: 0.5967 - val_loss: 0.9811 - val_accuracy: 0.6011
Epoch 4/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9924 - accuracy: 0.5971 - val_loss: 0.9851 - val_accuracy: 0.5935
Epoch 5/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9912 - accuracy: 0.5988 - val_loss: 0.9896 - val_accuracy: 0.5934
Epoch 6/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9896 - accuracy: 0.5984 - val_loss: 0.9810 - val_accuracy: 0.5936
Epoch 7/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9892 - accuracy: 0.5978 - val_loss: 0.9845 - val_accuracy: 0.5994
Epoch 8/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9889 - accuracy: 0.5996 - val_loss: 0.9772 - val_accuracy: 0.6015
Epoch 9/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9880 - accuracy: 0.5992 - val_loss: 0.9798 - val_accuracy: 0.5991
Epoch 10/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9879 - accuracy: 0.6002 - val_loss: 0.9869 - val_accuracy: 0.5935
Epoch 11/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9878 - accuracy: 0.5998 - val_loss: 0.9790 - val_accuracy: 0.5985
Epoch 12/25
4385/4385 [==============================] - 14s 3ms/step - loss: 0.9871 - accuracy: 0.5999 - val_loss: 0.9845 - val_accuracy: 0.5964
Epoch 13/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9871 - accuracy: 0.6001 - val_loss: 0.9800 - val_accuracy: 0.5947
Epoch 14/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9873 - accuracy: 0.6001 - val_loss: 0.9810 - val_accuracy: 0.5934
Epoch 15/25
4385/4385 [==============================] - 14s 3ms/step - loss: 0.9865 - accuracy: 0.5988 - val_loss: 0.9824 - val_accuracy: 0.5898
Epoch 16/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9865 - accuracy: 0.5993 - val_loss: 0.9779 - val_accuracy: 0.5974
Epoch 17/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9866 - accuracy: 0.5991 - val_loss: 0.9785 - val_accuracy: 0.5972
Epoch 18/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9863 - accuracy: 0.6001 - val_loss: 0.9803 - val_accuracy: 0.5991
Epoch 19/25
4385/4385 [==============================] - 16s 4ms/step - loss: 0.9863 - accuracy: 0.5996 - val_loss: 0.9773 - val_accuracy: 0.5957
Epoch 20/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9862 - accuracy: 0.5995 - val_loss: 0.9744 - val_accuracy: 0.6009
Epoch 21/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9861 - accuracy: 0.5997 - val_loss: 0.9787 - val_accuracy: 0.5968
Epoch 22/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9855 - accuracy: 0.5998 - val_loss: 0.9794 - val_accuracy: 0.5976
Epoch 23/25
4385/4385 [==============================] - 14s 3ms/step - loss: 0.9861 - accuracy: 0.5998 - val_loss: 0.9778 - val_accuracy: 0.5966
Epoch 24/25
4385/4385 [==============================] - 15s 3ms/step - loss: 0.9860 - accuracy: 0.5999 - val_loss: 0.9831 - val_accuracy: 0.5912
Epoch 25/25
4385/4385 [==============================] - 14s 3ms/step - loss: 0.9858 - accuracy: 0.5999 - val_loss: 0.9780 - val_accuracy: 0.5977

پیش بینی

پیش‌بینی‌هایی را برای مجموعه اعتبارسنجی و مجموعه آموزشی اجرا کنید.

plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
[<matplotlib.lines.Line2D at 0x7f62684da090>]

png

train_eval_result = model.evaluate(dict(train_df), train_df['Sentiment'])
validation_eval_result = model.evaluate(dict(validation_df), validation_df['Sentiment'])

print(f"Training set accuracy: {train_eval_result[1]}")
print(f"Validation set accuracy: {validation_eval_result[1]}")
4385/4385 [==============================] - 14s 3ms/step - loss: 0.9834 - accuracy: 0.6007
493/493 [==============================] - 1s 2ms/step - loss: 0.9780 - accuracy: 0.5977
Training set accuracy: 0.6006770730018616
Validation set accuracy: 0.5976500511169434

ماتریس سردرگمی

آمار بسیار جالب دیگر، به ویژه برای مشکلات multiclass، است ماتریس سردرگمی . ماتریس سردرگمی امکان تجسم نسبت نمونه هایی که به درستی و نادرست برچسب گذاری شده اند را می دهد. ما به راحتی می توانیم ببینیم که طبقه بندی کننده ما تا چه اندازه مغرضانه است و آیا توزیع برچسب ها منطقی است یا خیر. در حالت ایده آل، بزرگترین کسری از پیش بینی ها باید در امتداد مورب توزیع شود.

predictions = model.predict(dict(validation_df))
predictions = tf.argmax(predictions, axis=-1)
predictions
<tf.Tensor: shape=(15745,), dtype=int64, numpy=array([1, 1, 2, ..., 2, 2, 2])>
cm = tf.math.confusion_matrix(validation_df['Sentiment'], predictions)
cm = cm/cm.numpy().sum(axis=1)[:, tf.newaxis]
sns.heatmap(
    cm, annot=True,
    xticklabels=SENTIMENT_LABELS,
    yticklabels=SENTIMENT_LABELS)
plt.xlabel("Predicted")
plt.ylabel("True")
Text(32.99999999999999, 0.5, 'True')

png

با چسباندن کد زیر به سلول کد و اجرای آن، به راحتی می‌توانیم پیش‌بینی‌ها را به Kaggle ارسال کنیم:

test_predictions = model.predict(dict(test_df))
test_predictions = np.argmax(test_predictions, axis=-1)

result_df = test_df.copy()

result_df["Predictions"] = test_predictions

result_df.to_csv(
    "predictions.csv",
    columns=["Predictions"],
    header=["Sentiment"])
kaggle.api.competition_submit("predictions.csv", "Submitted from Colab",
                              "sentiment-analysis-on-movie-reviews")

پس از ارسال، رهبران بررسی تا ببینید که چگونه شما انجام داد.