Demo Universal Sentence Encoder-Lite

Lihat di TensorFlow.org Jalankan di Google Colab Lihat di GitHub Unduh buku catatan Lihat model TF Hub

Colab ini mengilustrasikan cara menggunakan Universal Sentence Encoder-Lite untuk tugas kesamaan kalimat. Modul ini sangat mirip dengan Universal Kalimat Encoder dengan perbedaan hanya yang Anda butuhkan untuk menjalankan SentencePiece pemrosesan pada kalimat masukan Anda.

Universal Sentence Encoder membuat mendapatkan penyematan tingkat kalimat semudah mencari penyematan untuk kata-kata individual secara historis. Penyematan kalimat kemudian dapat digunakan secara sepele untuk menghitung kesamaan makna tingkat kalimat serta untuk memungkinkan kinerja yang lebih baik pada tugas klasifikasi hilir menggunakan data pelatihan yang kurang diawasi.

Mulai

Mempersiapkan

# Install seaborn for pretty visualizations
pip3 install --quiet seaborn
# Install SentencePiece package
# SentencePiece package is needed for Universal Sentence Encoder Lite. We'll
# use it for all the text processing and sentence feature ID lookup.
pip3 install --quiet sentencepiece
from absl import logging

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

import tensorflow_hub as hub
import sentencepiece as spm
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import re
import seaborn as sns
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/compat/v2_compat.py:111: disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed in a future version.
Instructions for updating:
non-resource variables are not supported in the long term

Muat modul dari TF-Hub

module = hub.Module("https://tfhub.dev/google/universal-sentence-encoder-lite/2")
input_placeholder = tf.sparse_placeholder(tf.int64, shape=[None, None])
encodings = module(
    inputs=dict(
        values=input_placeholder.values,
        indices=input_placeholder.indices,
        dense_shape=input_placeholder.dense_shape))
INFO:tensorflow:Saver not created because there are no variables in the graph to restore
INFO:tensorflow:Saver not created because there are no variables in the graph to restore

Muat model SentencePiece dari Modul TF-Hub

Model SentencePiece mudah disimpan di dalam aset modul. Itu harus dimuat untuk menginisialisasi prosesor.

with tf.Session() as sess:
  spm_path = sess.run(module(signature="spm_path"))

sp = spm.SentencePieceProcessor()
with tf.io.gfile.GFile(spm_path, mode="rb") as f:
  sp.LoadFromSerializedProto(f.read())
print("SentencePiece model loaded at {}.".format(spm_path))
INFO:tensorflow:Saver not created because there are no variables in the graph to restore
INFO:tensorflow:Saver not created because there are no variables in the graph to restore
SentencePiece model loaded at b'/tmp/tfhub_modules/539544f0a997d91c327c23285ea00c37588d92cc/assets/universal_encoder_8k_spm.model'.
def process_to_IDs_in_sparse_format(sp, sentences):
  # An utility method that processes sentences with the sentence piece processor
  # 'sp' and returns the results in tf.SparseTensor-similar format:
  # (values, indices, dense_shape)
  ids = [sp.EncodeAsIds(x) for x in sentences]
  max_len = max(len(x) for x in ids)
  dense_shape=(len(ids), max_len)
  values=[item for sublist in ids for item in sublist]
  indices=[[row,col] for row in range(len(ids)) for col in range(len(ids[row]))]
  return (values, indices, dense_shape)

Uji modul dengan beberapa contoh

# Compute a representation for each message, showing various lengths supported.
word = "Elephant"
sentence = "I am a sentence for which I would like to get its embedding."
paragraph = (
    "Universal Sentence Encoder embeddings also support short paragraphs. "
    "There is no hard limit on how long the paragraph is. Roughly, the longer "
    "the more 'diluted' the embedding will be.")
messages = [word, sentence, paragraph]

values, indices, dense_shape = process_to_IDs_in_sparse_format(sp, messages)

# Reduce logging output.
logging.set_verbosity(logging.ERROR)

with tf.Session() as session:
  session.run([tf.global_variables_initializer(), tf.tables_initializer()])
  message_embeddings = session.run(
      encodings,
      feed_dict={input_placeholder.values: values,
                input_placeholder.indices: indices,
                input_placeholder.dense_shape: dense_shape})

  for i, message_embedding in enumerate(np.array(message_embeddings).tolist()):
    print("Message: {}".format(messages[i]))
    print("Embedding size: {}".format(len(message_embedding)))
    message_embedding_snippet = ", ".join(
        (str(x) for x in message_embedding[:3]))
    print("Embedding: [{}, ...]\n".format(message_embedding_snippet))
Message: Elephant
Embedding size: 512
Embedding: [0.053387489169836044, 0.053194381296634674, -0.052356015890836716, ...]

Message: I am a sentence for which I would like to get its embedding.
Embedding size: 512
Embedding: [0.03533298149704933, -0.04714975506067276, 0.012305550277233124, ...]

Message: Universal Sentence Encoder embeddings also support short paragraphs. There is no hard limit on how long the paragraph is. Roughly, the longer the more 'diluted' the embedding will be.
Embedding size: 512
Embedding: [-0.004081667400896549, -0.08954868465662003, 0.03737196698784828, ...]

Contoh tugas Semantic Textual Similarity (STS)

Embeddings yang dihasilkan oleh Universal Sentence Encoder kira-kira dinormalisasi. Kesamaan semantik dari dua kalimat dapat dihitung secara sepele sebagai produk dalam dari pengkodean.

def plot_similarity(labels, features, rotation):
  corr = np.inner(features, features)
  sns.set(font_scale=1.2)
  g = sns.heatmap(
      corr,
      xticklabels=labels,
      yticklabels=labels,
      vmin=0,
      vmax=1,
      cmap="YlOrRd")
  g.set_xticklabels(labels, rotation=rotation)
  g.set_title("Semantic Textual Similarity")


def run_and_plot(session, input_placeholder, messages):
  values, indices, dense_shape = process_to_IDs_in_sparse_format(sp,messages)

  message_embeddings = session.run(
      encodings,
      feed_dict={input_placeholder.values: values,
                input_placeholder.indices: indices,
                input_placeholder.dense_shape: dense_shape})

  plot_similarity(messages, message_embeddings, 90)

Kesamaan divisualisasikan

Di sini kami menunjukkan kesamaan dalam peta panas. Grafik akhir adalah matriks 9x9 di mana setiap entri [i, j] berwarna berdasarkan produk dalam dari pengkodean untuk kalimat i dan j .

messages = [
    # Smartphones
    "I like my phone",
    "My phone is not good.",
    "Your cellphone looks great.",

    # Weather
    "Will it snow tomorrow?",
    "Recently a lot of hurricanes have hit the US",
    "Global warming is real",

    # Food and health
    "An apple a day, keeps the doctors away",
    "Eating strawberries is healthy",
    "Is paleo better than keto?",

    # Asking about age
    "How old are you?",
    "what is your age?",
]


with tf.Session() as session:
  session.run(tf.global_variables_initializer())
  session.run(tf.tables_initializer())
  run_and_plot(session, input_placeholder, messages)

png

Evaluasi: Tolok Ukur STS (Semantic Textual Similarity)

The STS benchmark memberikan evaluasi intristic dari tingkat yang nilai kesamaan dihitung kalimat embeddings menyelaraskan dengan penilaian manusia. Patokan membutuhkan sistem untuk mengembalikan skor kesamaan untuk beragam pilihan pasangan kalimat. Korelasi Pearson kemudian digunakan untuk mengevaluasi kualitas dari nilai mesin kesamaan terhadap penilaian manusia.

Unduh data

import pandas
import scipy
import math


def load_sts_dataset(filename):
  # Loads a subset of the STS dataset into a DataFrame. In particular both
  # sentences and their human rated similarity score.
  sent_pairs = []
  with tf.gfile.GFile(filename, "r") as f:
    for line in f:
      ts = line.strip().split("\t")
      # (sent_1, sent_2, similarity_score)
      sent_pairs.append((ts[5], ts[6], float(ts[4])))
  return pandas.DataFrame(sent_pairs, columns=["sent_1", "sent_2", "sim"])


def download_and_load_sts_data():
  sts_dataset = tf.keras.utils.get_file(
      fname="Stsbenchmark.tar.gz",
      origin="http://ixa2.si.ehu.es/stswiki/images/4/48/Stsbenchmark.tar.gz",
      extract=True)

  sts_dev = load_sts_dataset(
      os.path.join(os.path.dirname(sts_dataset), "stsbenchmark", "sts-dev.csv"))
  sts_test = load_sts_dataset(
      os.path.join(
          os.path.dirname(sts_dataset), "stsbenchmark", "sts-test.csv"))

  return sts_dev, sts_test


sts_dev, sts_test = download_and_load_sts_data()
Downloading data from http://ixa2.si.ehu.es/stswiki/images/4/48/Stsbenchmark.tar.gz
417792/409630 [==============================] - 2s 5us/step
425984/409630 [===============================] - 2s 5us/step

Buat grafik evaluasi

sts_input1 = tf.sparse_placeholder(tf.int64, shape=(None, None))
sts_input2 = tf.sparse_placeholder(tf.int64, shape=(None, None))

# For evaluation we use exactly normalized rather than
# approximately normalized.
sts_encode1 = tf.nn.l2_normalize(
    module(
        inputs=dict(values=sts_input1.values,
                    indices=sts_input1.indices,
                    dense_shape=sts_input1.dense_shape)),
    axis=1)
sts_encode2 = tf.nn.l2_normalize(
    module(
        inputs=dict(values=sts_input2.values,
                    indices=sts_input2.indices,
                    dense_shape=sts_input2.dense_shape)),
    axis=1)

sim_scores = -tf.acos(tf.reduce_sum(tf.multiply(sts_encode1, sts_encode2), axis=1))
INFO:tensorflow:Saver not created because there are no variables in the graph to restore
INFO:tensorflow:Saver not created because there are no variables in the graph to restore
INFO:tensorflow:Saver not created because there are no variables in the graph to restore
INFO:tensorflow:Saver not created because there are no variables in the graph to restore

Evaluasi penyematan kalimat

Pilih kumpulan data untuk benchmark

def run_sts_benchmark(session):
  """Returns the similarity scores"""
  scores = session.run(
      sim_scores,
      feed_dict={
          sts_input1.values: values1,
          sts_input1.indices:  indices1,
          sts_input1.dense_shape:  dense_shape1,
          sts_input2.values:  values2,
          sts_input2.indices:  indices2,
          sts_input2.dense_shape:  dense_shape2,
      })
  return scores


with tf.Session() as session:
  session.run(tf.global_variables_initializer())
  session.run(tf.tables_initializer())
  scores = run_sts_benchmark(session)

pearson_correlation = scipy.stats.pearsonr(scores, similarity_scores)
print('Pearson correlation coefficient = {0}\np-value = {1}'.format(
    pearson_correlation[0], pearson_correlation[1]))
Pearson correlation coefficient = 0.7856484874001958
p-value = 1.065794746e-314