Codificador de frase universal

Ver no TensorFlow.org Executar no Google Colab Ver no GitHub Baixar caderno Veja os modelos TF Hub

Este bloco de notas ilustra como acessar o Codificador de Sentenças Universais e usá-lo para tarefas de similaridade e classificação de sentenças.

O Codificador de Sentença Universal torna a obtenção de embeddings em nível de frase tão fácil quanto tem sido historicamente procurar embeddings de palavras individuais. Os embeddings de frase podem então ser usados ​​trivialmente para computar similaridade de significado de nível de frase, bem como para permitir um melhor desempenho em tarefas de classificação downstream usando menos dados de treinamento supervisionados.

Configurar

Esta seção configura o ambiente para acesso ao Codificador de Sentença Universal no TF Hub e fornece exemplos de aplicação do codificador a palavras, sentenças e parágrafos.

%%capture
!pip3 install seaborn

Informações mais detalhadas sobre a instalação Tensorflow podem ser encontradas em https://www.tensorflow.org/install/ .

Carregar o módulo TF Hub do Universal Quote Encoder

module https://tfhub.dev/google/universal-sentence-encoder/4 loaded

Calcule uma representação para cada mensagem, mostrando vários comprimentos suportados.

Message: Elephant
Embedding size: 512
Embedding: [0.008344474248588085, 0.00048079612315632403, 0.06595245748758316, ...]

Message: I am a sentence for which I would like to get its embedding.
Embedding size: 512
Embedding: [0.05080860108137131, -0.016524313017725945, 0.015737781301140785, ...]

Message: Universal Sentence Encoder embeddings also support short paragraphs. There is no hard limit on how long the paragraph is. Roughly, the longer the more 'diluted' the embedding will be.
Embedding size: 512
Embedding: [-0.028332678601145744, -0.05586216226220131, -0.012941479682922363, ...]

Exemplo de tarefa de similaridade textual semântica

Os embeddings produzidos pelo Codificador de Sentença Universal são aproximadamente normalizados. A semelhança semântica de duas sentenças pode ser trivialmente calculada como o produto interno das codificações.

def plot_similarity(labels, features, rotation):
  corr = np.inner(features, features)
  sns.set(font_scale=1.2)
  g = sns.heatmap(
      corr,
      xticklabels=labels,
      yticklabels=labels,
      vmin=0,
      vmax=1,
      cmap="YlOrRd")
  g.set_xticklabels(labels, rotation=rotation)
  g.set_title("Semantic Textual Similarity")

def run_and_plot(messages_):
  message_embeddings_ = embed(messages_)
  plot_similarity(messages_, message_embeddings_, 90)

Similaridade visualizada

Aqui, mostramos a semelhança em um mapa de calor. O gráfico final é uma matriz de 9x9, onde cada entrada [i, j] é colorida com base no produto interno das codificações para frase i e j .

messages = [
    # Smartphones
    "I like my phone",
    "My phone is not good.",
    "Your cellphone looks great.",

    # Weather
    "Will it snow tomorrow?",
    "Recently a lot of hurricanes have hit the US",
    "Global warming is real",

    # Food and health
    "An apple a day, keeps the doctors away",
    "Eating strawberries is healthy",
    "Is paleo better than keto?",

    # Asking about age
    "How old are you?",
    "what is your age?",
]

run_and_plot(messages)

png

Avaliação: Referência STS (Semântica Textual Similarity)

O Índice de referência STS fornece uma avaliação intrínseca do grau em que a pontuação de semelhança calculada usando frase embeddings alinhamento com julgamentos humanos. O benchmark requer que os sistemas retornem pontuações de similaridade para uma seleção diversa de pares de frases. De correlação de Pearson é então utilizado para avaliar a qualidade das pontuações de semelhança máquina contra julgamentos humanos.

Baixar dados

import pandas
import scipy
import math
import csv

sts_dataset = tf.keras.utils.get_file(
    fname="Stsbenchmark.tar.gz",
    origin="http://ixa2.si.ehu.es/stswiki/images/4/48/Stsbenchmark.tar.gz",
    extract=True)
sts_dev = pandas.read_table(
    os.path.join(os.path.dirname(sts_dataset), "stsbenchmark", "sts-dev.csv"),
    error_bad_lines=False,
    skip_blank_lines=True,
    usecols=[4, 5, 6],
    names=["sim", "sent_1", "sent_2"])
sts_test = pandas.read_table(
    os.path.join(
        os.path.dirname(sts_dataset), "stsbenchmark", "sts-test.csv"),
    error_bad_lines=False,
    quoting=csv.QUOTE_NONE,
    skip_blank_lines=True,
    usecols=[4, 5, 6],
    names=["sim", "sent_1", "sent_2"])
# cleanup some NaN values in sts_dev
sts_dev = sts_dev[[isinstance(s, str) for s in sts_dev['sent_2']]]
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3444: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version.


  exec(code_obj, self.user_global_ns, self.user_ns)

Avalie Embeddings de Frases

sts_data = sts_dev

def run_sts_benchmark(batch):
  sts_encode1 = tf.nn.l2_normalize(embed(tf.constant(batch['sent_1'].tolist())), axis=1)
  sts_encode2 = tf.nn.l2_normalize(embed(tf.constant(batch['sent_2'].tolist())), axis=1)
  cosine_similarities = tf.reduce_sum(tf.multiply(sts_encode1, sts_encode2), axis=1)
  clip_cosine_similarities = tf.clip_by_value(cosine_similarities, -1.0, 1.0)
  scores = 1.0 - tf.acos(clip_cosine_similarities) / math.pi
  """Returns the similarity scores"""
  return scores

dev_scores = sts_data['sim'].tolist()
scores = []
for batch in np.array_split(sts_data, 10):
  scores.extend(run_sts_benchmark(batch))

pearson_correlation = scipy.stats.pearsonr(scores, dev_scores)
print('Pearson correlation coefficient = {0}\np-value = {1}'.format(
    pearson_correlation[0], pearson_correlation[1]))
Pearson correlation coefficient = 0.8036394630692778
p-value = 0.0