বহুভাষিক ইউনিভার্সাল বাক্য এনকোডারের সাথে ক্রস-লিঙ্গুয়াল মিল এবং সিমান্টিক সার্চ ইঞ্জিন

TensorFlow.org এ দেখুন Google Colab-এ চালান GitHub এ দেখুন নোটবুক ডাউনলোড করুন TF হাব মডেল দেখুন

এই নোটবুকটি ব্যাখ্যা করে যে কিভাবে বহুভাষিক সার্বজনীন বাক্য এনকোডার মডিউল অ্যাক্সেস করতে হয় এবং একাধিক ভাষায় বাক্যের মিলের জন্য এটি ব্যবহার করতে হয়। এই মডিউল একজন এক্সটেনশান মূল ইউনিভার্সাল এনকোডার মডিউল

নোটবুকটি নিম্নরূপ বিভক্ত:

  • প্রথম বিভাগটি ভাষার জোড়ার মধ্যে বাক্যগুলির একটি দৃশ্যায়ন দেখায়। এটি আরও একাডেমিক অনুশীলন।
  • দ্বিতীয় বিভাগে, আমরা দেখাই কিভাবে একাধিক ভাষায় উইকিপিডিয়া কর্পাসের নমুনা থেকে একটি শব্দার্থিক অনুসন্ধান ইঞ্জিন তৈরি করা যায়।

উদ্ধৃতি

এই কোল্যাবে অন্বেষণ করা মডেলগুলি ব্যবহার করে এমন গবেষণাপত্রগুলি উদ্ধৃত করা উচিত:

শব্দার্থক পুনরুদ্ধারের জন্য বহুভাষিক সর্বজনীন বাক্য এনকোডার

ইয়িনফেই ইয়াং, ড্যানিয়েল সের, আমিন আহমেদ, ম্যান্ডি গুও, জ্যাক্স ল, নোয়া কনস্ট্যান্ট, গুস্তাভো হার্নান্দেজ আব্রেগো, স্টিভ ইউয়ান, ক্রিস টার, ইউন-হসুয়ান সুং, ব্রায়ান স্ট্রোপ এবং রে কার্জউইল। 2019. arXiv প্রিপ্রিন্ট arXiv:1907.04307

সেটআপ

এই বিভাগটি বহুভাষিক ইউনিভার্সাল সেন্টেন্স এনকোডার মডিউলে অ্যাক্সেসের জন্য পরিবেশ তৈরি করে এবং ইংরেজি বাক্য ও তাদের অনুবাদের একটি সেটও প্রস্তুত করে। নিম্নলিখিত বিভাগগুলিতে, বহুভাষী মডিউল ভাষাতে আদল গনা ব্যবহার করা হবে।

সেটআপ পরিবেশ

%%capture
# Install the latest Tensorflow version.
!pip install tensorflow_text
!pip install bokeh
!pip install simpleneighbors[annoy]
!pip install tqdm

সেটআপ সাধারণ আমদানি এবং ফাংশন

import bokeh
import bokeh.models
import bokeh.plotting
import numpy as np
import os
import pandas as pd
import tensorflow.compat.v2 as tf
import tensorflow_hub as hub
from tensorflow_text import SentencepieceTokenizer
import sklearn.metrics.pairwise

from simpleneighbors import SimpleNeighbors
from tqdm import tqdm
from tqdm import trange

def visualize_similarity(embeddings_1, embeddings_2, labels_1, labels_2,
                         plot_title,
                         plot_width=1200, plot_height=600,
                         xaxis_font_size='12pt', yaxis_font_size='12pt'):

  assert len(embeddings_1) == len(labels_1)
  assert len(embeddings_2) == len(labels_2)

  # arccos based text similarity (Yang et al. 2019; Cer et al. 2019)
  sim = 1 - np.arccos(
      sklearn.metrics.pairwise.cosine_similarity(embeddings_1,
                                                 embeddings_2))/np.pi

  embeddings_1_col, embeddings_2_col, sim_col = [], [], []
  for i in range(len(embeddings_1)):
    for j in range(len(embeddings_2)):
      embeddings_1_col.append(labels_1[i])
      embeddings_2_col.append(labels_2[j])
      sim_col.append(sim[i][j])
  df = pd.DataFrame(zip(embeddings_1_col, embeddings_2_col, sim_col),
                    columns=['embeddings_1', 'embeddings_2', 'sim'])

  mapper = bokeh.models.LinearColorMapper(
      palette=[*reversed(bokeh.palettes.YlOrRd[9])], low=df.sim.min(),
      high=df.sim.max())

  p = bokeh.plotting.figure(title=plot_title, x_range=labels_1,
                            x_axis_location="above",
                            y_range=[*reversed(labels_2)],
                            plot_width=plot_width, plot_height=plot_height,
                            tools="save",toolbar_location='below', tooltips=[
                                ('pair', '@embeddings_1 ||| @embeddings_2'),
                                ('sim', '@sim')])
  p.rect(x="embeddings_1", y="embeddings_2", width=1, height=1, source=df,
         fill_color={'field': 'sim', 'transform': mapper}, line_color=None)

  p.title.text_font_size = '12pt'
  p.axis.axis_line_color = None
  p.axis.major_tick_line_color = None
  p.axis.major_label_standoff = 16
  p.xaxis.major_label_text_font_size = xaxis_font_size
  p.xaxis.major_label_orientation = 0.25 * np.pi
  p.yaxis.major_label_text_font_size = yaxis_font_size
  p.min_border_right = 300

  bokeh.io.output_notebook()
  bokeh.io.show(p)

এটি অতিরিক্ত বয়লারপ্লেট কোড যেখানে আমরা পূর্ব-প্রশিক্ষিত এমএল মডেলটি আমদানি করি যা আমরা এই নোটবুক জুড়ে পাঠ্য এনকোড করতে ব্যবহার করব।

# The 16-language multilingual module is the default but feel free
# to pick others from the list and compare the results.
module_url = 'https://tfhub.dev/google/universal-sentence-encoder-multilingual/3'

model = hub.load(module_url)

def embed_text(input):
  return model(input)

ভাষার মধ্যে পাঠ্যের সাদৃশ্য কল্পনা করুন

বাক্যটির এমবেডিং এখন হাতে আছে, আমরা বিভিন্ন ভাষা জুড়ে শব্দার্থগত সাদৃশ্য কল্পনা করতে পারি।

কম্পিউটিং টেক্সট এম্বেডিং

আমরা প্রথমে সমান্তরালভাবে বিভিন্ন ভাষায় অনুবাদ করা বাক্যের একটি সেট সংজ্ঞায়িত করি। তারপর, আমরা আমাদের সমস্ত বাক্যগুলির জন্য এম্বেডিংগুলিকে প্রাক গণনা করি।

# Some texts of different lengths in different languages.
arabic_sentences = ['كلب', 'الجراء لطيفة.', 'أستمتع بالمشي لمسافات طويلة على طول الشاطئ مع كلبي.']
chinese_sentences = ['狗', '小狗很好。', '我喜欢和我的狗一起沿着海滩散步。']
english_sentences = ['dog', 'Puppies are nice.', 'I enjoy taking long walks along the beach with my dog.']
french_sentences = ['chien', 'Les chiots sont gentils.', 'J\'aime faire de longues promenades sur la plage avec mon chien.']
german_sentences = ['Hund', 'Welpen sind nett.', 'Ich genieße lange Spaziergänge am Strand entlang mit meinem Hund.']
italian_sentences = ['cane', 'I cuccioli sono carini.', 'Mi piace fare lunghe passeggiate lungo la spiaggia con il mio cane.']
japanese_sentences = ['犬', '子犬はいいです', '私は犬と一緒にビーチを散歩するのが好きです']
korean_sentences = ['개', '강아지가 좋다.', '나는 나의 개와 해변을 따라 길게 산책하는 것을 즐긴다.']
russian_sentences = ['собака', 'Милые щенки.', 'Мне нравится подолгу гулять по пляжу со своей собакой.']
spanish_sentences = ['perro', 'Los cachorros son agradables.', 'Disfruto de dar largos paseos por la playa con mi perro.']

# Multilingual example
multilingual_example = ["Willkommen zu einfachen, aber", "verrassend krachtige", "multilingüe", "compréhension du langage naturel", "модели.", "大家是什么意思" , "보다 중요한", ".اللغة التي يتحدثونها"]
multilingual_example_in_en =  ["Welcome to simple yet", "surprisingly powerful", "multilingual", "natural language understanding", "models.", "What people mean", "matters more than", "the language they speak."]
# Compute embeddings.
ar_result = embed_text(arabic_sentences)
en_result = embed_text(english_sentences)
es_result = embed_text(spanish_sentences)
de_result = embed_text(german_sentences)
fr_result = embed_text(french_sentences)
it_result = embed_text(italian_sentences)
ja_result = embed_text(japanese_sentences)
ko_result = embed_text(korean_sentences)
ru_result = embed_text(russian_sentences)
zh_result = embed_text(chinese_sentences)

multilingual_result = embed_text(multilingual_example)
multilingual_in_en_result = embed_text(multilingual_example_in_en)

সাদৃশ্য ভিজ্যুয়ালাইজ করা

টেক্সট এম্বেডিং হাতে রেখে, আমরা তাদের ডট-প্রোডাক্ট নিতে পারি ভাষার মধ্যে কতটা একই রকম বাক্য আছে তা কল্পনা করতে। একটি গাঢ় রঙ নির্দেশ করে যে এম্বেডিং শব্দার্থগতভাবে একই রকম।

বহুভাষিক সাদৃশ্য

visualize_similarity(multilingual_in_en_result, multilingual_result,
                     multilingual_example_in_en, multilingual_example,  "Multilingual Universal Sentence Encoder for Semantic Retrieval (Yang et al., 2019)")

ইংরেজি-আরবি মিল

visualize_similarity(en_result, ar_result, english_sentences, arabic_sentences, 'English-Arabic Similarity')

ইংরেজি-রাশিয়ান সাদৃশ্য

visualize_similarity(en_result, ru_result, english_sentences, russian_sentences, 'English-Russian Similarity')

ইংরেজি-স্প্যানিশ মিল

visualize_similarity(en_result, es_result, english_sentences, spanish_sentences, 'English-Spanish Similarity')

ইংরেজি-ইতালীয় সাদৃশ্য

visualize_similarity(en_result, it_result, english_sentences, italian_sentences, 'English-Italian Similarity')

ইতালীয়-স্প্যানিশ মিল

visualize_similarity(it_result, es_result, italian_sentences, spanish_sentences, 'Italian-Spanish Similarity')

ইংরেজি-চীনা মিল

visualize_similarity(en_result, zh_result, english_sentences, chinese_sentences, 'English-Chinese Similarity')

ইংরেজি-কোরিয়ান মিল

visualize_similarity(en_result, ko_result, english_sentences, korean_sentences, 'English-Korean Similarity')

চীনা-কোরিয়ান মিল

visualize_similarity(zh_result, ko_result, chinese_sentences, korean_sentences, 'Chinese-Korean Similarity')

এবং আরো...

উপরের উদাহরণগুলোতে ইংরেজি, আরবি, চীনা, ডাচ, ফরাসি, জার্মান, ইতালিয়ান, জাপানি, কোরিয়ান, পোলিশ, পর্তুগিজ, রাশিয়ান, স্প্যানিশ, থাই ও তুর্কি থেকে কোন ভাষা যুগল বাড়ানো যেতে পারে। শুভ কোডিং!

একটি বহুভাষিক শব্দার্থক-সাদৃশ্য অনুসন্ধান ইঞ্জিন তৈরি করা

যেখানে আগের উদাহরণে আমরা কয়েকটি বাক্যকে কল্পনা করেছি, এই বিভাগে আমরা একটি উইকিপিডিয়া কর্পাস থেকে প্রায় 200,000 বাক্যের একটি শব্দার্থ-অনুসন্ধান সূচক তৈরি করব। ইউনিভার্সাল সেন্টেন্স এনকোডারের বহুভাষিক ক্ষমতা প্রদর্শনের জন্য প্রায় অর্ধেক ইংরেজিতে এবং বাকি অর্ধেক স্প্যানিশে হবে।

ইনডেক্সে ডেটা ডাউনলোড করুন

প্রথমত, আমরা থেকে গুণিতক ভাষায় সংবাদ বাক্য ডাউনলোড করবে সংবাদ ভাষ্য করপাস [1]। সাধারণতা হারানো ছাড়া, এই পদ্ধতির বাকি সমর্থিত ভাষাগুলির সূচীকরণের জন্যও কাজ করা উচিত।

ডেমোর গতি বাড়ানোর জন্য, আমরা প্রতি ভাষায় 1000 বাক্য সীমাবদ্ধ করি।

corpus_metadata = [
    ('ar', 'ar-en.txt.zip', 'News-Commentary.ar-en.ar', 'Arabic'),
    ('zh', 'en-zh.txt.zip', 'News-Commentary.en-zh.zh', 'Chinese'),
    ('en', 'en-es.txt.zip', 'News-Commentary.en-es.en', 'English'),
    ('ru', 'en-ru.txt.zip', 'News-Commentary.en-ru.ru', 'Russian'),
    ('es', 'en-es.txt.zip', 'News-Commentary.en-es.es', 'Spanish'),
]

language_to_sentences = {}
language_to_news_path = {}
for language_code, zip_file, news_file, language_name in corpus_metadata:
  zip_path = tf.keras.utils.get_file(
      fname=zip_file,
      origin='http://opus.nlpl.eu/download.php?f=News-Commentary/v11/moses/' + zip_file,
      extract=True)
  news_path = os.path.join(os.path.dirname(zip_path), news_file)
  language_to_sentences[language_code] = pd.read_csv(news_path, sep='\t', header=None)[0][:1000]
  language_to_news_path[language_code] = news_path

  print('{:,} {} sentences'.format(len(language_to_sentences[language_code]), language_name))
Downloading data from http://opus.nlpl.eu/download.php?f=News-Commentary/v11/moses/ar-en.txt.zip
24715264/24714354 [==============================] - 2s 0us/step
1,000 Arabic sentences
Downloading data from http://opus.nlpl.eu/download.php?f=News-Commentary/v11/moses/en-zh.txt.zip
18104320/18101984 [==============================] - 2s 0us/step
1,000 Chinese sentences
Downloading data from http://opus.nlpl.eu/download.php?f=News-Commentary/v11/moses/en-es.txt.zip
28106752/28106064 [==============================] - 2s 0us/step
1,000 English sentences
Downloading data from http://opus.nlpl.eu/download.php?f=News-Commentary/v11/moses/en-ru.txt.zip
24854528/24849511 [==============================] - 2s 0us/step
1,000 Russian sentences
1,000 Spanish sentences

বাক্যগুলিকে ভেক্টরে রূপান্তর করতে একটি প্রাক-প্রশিক্ষিত মডেল ব্যবহার করা

আমরা ব্যাচে embeddings গনা যাতে তারা জিপিইউ এর RAM- র মধ্যে মাপসই করা হবে।

# Takes about 3 minutes

batch_size = 2048
language_to_embeddings = {}
for language_code, zip_file, news_file, language_name in corpus_metadata:
  print('\nComputing {} embeddings'.format(language_name))
  with tqdm(total=len(language_to_sentences[language_code])) as pbar:
    for batch in pd.read_csv(language_to_news_path[language_code], sep='\t',header=None, chunksize=batch_size):
      language_to_embeddings.setdefault(language_code, []).extend(embed_text(batch[0]))
      pbar.update(len(batch))
0%|          | 0/1000 [00:00<?, ?it/s]
Computing Arabic embeddings
83178it [00:30, 2768.60it/s]
  0%|          | 0/1000 [00:00<?, ?it/s]
Computing Chinese embeddings
69206it [00:18, 3664.60it/s]
  0%|          | 0/1000 [00:00<?, ?it/s]
Computing English embeddings
238853it [00:37, 6319.00it/s]
  0%|          | 0/1000 [00:00<?, ?it/s]
Computing Russian embeddings
190092it [00:34, 5589.16it/s]
  0%|          | 0/1000 [00:00<?, ?it/s]
Computing Spanish embeddings
238819it [00:41, 5754.02it/s]

শব্দার্থিক ভেক্টরের একটি সূচক তৈরি করা

আমরা ব্যবহার SimpleNeighbors গ্রন্থাগার --- যার জন্য মোড়কের হয় জ্বালানো গ্রন্থাগার --- দক্ষতার কর্পাস থেকে ফলাফল সন্ধান করার।

%%time

# Takes about 8 minutes

num_index_trees = 40
language_name_to_index = {}
embedding_dimensions = len(list(language_to_embeddings.values())[0][0])
for language_code, zip_file, news_file, language_name in corpus_metadata:
  print('\nAdding {} embeddings to index'.format(language_name))
  index = SimpleNeighbors(embedding_dimensions, metric='dot')

  for i in trange(len(language_to_sentences[language_code])):
    index.add_one(language_to_sentences[language_code][i], language_to_embeddings[language_code][i])

  print('Building {} index with {} trees...'.format(language_name, num_index_trees))
  index.build(n=num_index_trees)
  language_name_to_index[language_name] = index
0%|          | 1/1000 [00:00<02:21,  7.04it/s]
Adding Arabic embeddings to index
100%|██████████| 1000/1000 [02:06<00:00,  7.90it/s]
  0%|          | 1/1000 [00:00<01:53,  8.84it/s]
Building Arabic index with 40 trees...

Adding Chinese embeddings to index
100%|██████████| 1000/1000 [02:05<00:00,  7.99it/s]
  0%|          | 1/1000 [00:00<01:59,  8.39it/s]
Building Chinese index with 40 trees...

Adding English embeddings to index
100%|██████████| 1000/1000 [02:07<00:00,  7.86it/s]
  0%|          | 1/1000 [00:00<02:17,  7.26it/s]
Building English index with 40 trees...

Adding Russian embeddings to index
100%|██████████| 1000/1000 [02:06<00:00,  7.91it/s]
  0%|          | 1/1000 [00:00<02:03,  8.06it/s]
Building Russian index with 40 trees...

Adding Spanish embeddings to index
100%|██████████| 1000/1000 [02:07<00:00,  7.84it/s]
Building Spanish index with 40 trees...
CPU times: user 11min 21s, sys: 2min 14s, total: 13min 35s
Wall time: 10min 33s

%%time

# Takes about 13 minutes

num_index_trees = 60
print('Computing mixed-language index')
combined_index = SimpleNeighbors(embedding_dimensions, metric='dot')
for language_code, zip_file, news_file, language_name in corpus_metadata:
  print('Adding {} embeddings to mixed-language index'.format(language_name))
  for i in trange(len(language_to_sentences[language_code])):
    annotated_sentence = '({}) {}'.format(language_name, language_to_sentences[language_code][i])
    combined_index.add_one(annotated_sentence, language_to_embeddings[language_code][i])

print('Building mixed-language index with {} trees...'.format(num_index_trees))
combined_index.build(n=num_index_trees)
0%|          | 1/1000 [00:00<02:00,  8.29it/s]
Computing mixed-language index
Adding Arabic embeddings to mixed-language index
100%|██████████| 1000/1000 [02:06<00:00,  7.92it/s]
  0%|          | 1/1000 [00:00<02:24,  6.89it/s]
Adding Chinese embeddings to mixed-language index
100%|██████████| 1000/1000 [02:05<00:00,  7.95it/s]
  0%|          | 1/1000 [00:00<02:05,  7.98it/s]
Adding English embeddings to mixed-language index
100%|██████████| 1000/1000 [02:06<00:00,  7.88it/s]
  0%|          | 1/1000 [00:00<02:18,  7.20it/s]
Adding Russian embeddings to mixed-language index
100%|██████████| 1000/1000 [02:04<00:00,  8.03it/s]
  0%|          | 1/1000 [00:00<02:17,  7.28it/s]
Adding Spanish embeddings to mixed-language index
100%|██████████| 1000/1000 [02:06<00:00,  7.90it/s]
Building mixed-language index with 60 trees...
CPU times: user 11min 18s, sys: 2min 13s, total: 13min 32s
Wall time: 10min 30s

শব্দার্থিক-সাদৃশ্য অনুসন্ধান ইঞ্জিন কাজ করে তা যাচাই করুন

এই বিভাগে আমরা প্রদর্শন করব:

  1. শব্দার্থক-অনুসন্ধান ক্ষমতা: কর্পাস থেকে বাক্য পুনরুদ্ধার করা যা প্রদত্ত ক্যোয়ারির সাথে শব্দার্থগতভাবে অনুরূপ।
  2. বহুভাষিক ক্ষমতা: একাধিক ভাষায় এটি করা যখন তারা ভাষা এবং সূচক ভাষা মেলে
  3. আন্তঃভাষিক ক্ষমতা: সূচীকৃত কর্পাসের চেয়ে আলাদা ভাষায় প্রশ্ন জারি করা
  4. মিশ্র-ভাষা কর্পাস: উপরের সমস্তগুলি একটি একক সূচকে সমস্ত ভাষার এন্ট্রি রয়েছে

শব্দার্থিক-অনুসন্ধান ক্রস-ভাষিক ক্ষমতা

এই বিভাগে আমরা দেখাই কিভাবে নমুনা ইংরেজি বাক্যের একটি সেট সম্পর্কিত বাক্য পুনরুদ্ধার করতে হয়। চেষ্টা করার জিনিস:

  • কয়েকটি ভিন্ন নমুনা বাক্য ব্যবহার করে দেখুন
  • প্রত্যাবর্তিত ফলাফলের সংখ্যা পরিবর্তন করার চেষ্টা করুন (সেগুলি সাদৃশ্যের ক্রমে ফেরত দেওয়া হয়)
  • বিভিন্ন ভাষায় ফলাফল ফেরার (ব্যবহার করতে চাইতে পারেন দ্বারা ক্রস ভাষাগত ক্ষমতা ব্যবহার করে দেখুন Google Translate উপর বৈধতা পরীক্ষা জন্য আপনার স্থানীয় ভাষা থেকে কিছু ফলাফল)

English sentences similar to: "The stock market fell four points."
['Nobel laureate Amartya Sen attributed the European crisis to four failures – political, economic, social, and intellectual.',
 'Just last December, fellow economists Martin Feldstein and Nouriel Roubini each penned op-eds bravely questioning bullish market sentiment, sensibly pointing out gold’s risks.',
 'His ratings have dipped below 50% for the first time.',
 'As a result, markets were deregulated, making it easier to trade assets that were perceived to be safe, but were in fact not.',
 'Consider the advanced economies.',
 'But the agreement has three major flaws.',
 'This “predetermined equilibrium” thinking – reflected in the view that markets always self-correct – led to policy paralysis until the Great Depression, when John Maynard Keynes’s argument for government intervention to address unemployment and output gaps gained traction.',
 'Officials underestimated tail risks.',
 'Consider a couple of notorious examples.',
 'Stalin was content to settle for an empire in Eastern Europe.']

মিশ্র-কর্পাস ক্ষমতা

আমরা এখন ইংরেজিতে একটি ক্যোয়ারী ইস্যু করব, তবে ফলাফলগুলি সূচীকৃত ভাষাগুলির যেকোনো একটি থেকে আসবে।

English sentences similar to: "The stock market fell four points."
['Nobel laureate Amartya Sen attributed the European crisis to four failures – political, economic, social, and intellectual.',
 'It was part of the 1945 consensus.',
 'The end of the East-West ideological divide and the end of absolute faith in markets are historical turning points.',
 'Just last December, fellow economists Martin Feldstein and Nouriel Roubini each penned op-eds bravely questioning bullish market sentiment, sensibly pointing out gold’s risks.',
 'His ratings have dipped below 50% for the first time.',
 'As a result, markets were deregulated, making it easier to trade assets that were perceived to be safe, but were in fact not.',
 'Consider the advanced economies.',
 'Since their articles appeared, the price of gold has moved up still further.',
 'But the agreement has three major flaws.',
 'Gold prices even hit a record-high $1,300 recently.',
 'This “predetermined equilibrium” thinking – reflected in the view that markets always self-correct – led to policy paralysis until the Great Depression, when John Maynard Keynes’s argument for government intervention to address unemployment and output gaps gained traction.',
 'What Failed in 2008?',
 'Officials underestimated tail risks.',
 'Consider a couple of notorious examples.',
 'One of these species, orange roughy, has been caught commercially for only around a quarter-century, but already is being fished to the point of collapse.',
 'Meanwhile, policymakers were lulled into complacency by the widespread acceptance of economic theories such as the “efficient-market hypothesis,” which assumes that investors act rationally and use all available information when making their decisions.',
 'Stalin was content to settle for an empire in Eastern Europe.',
 'Intelligence assets have been redirected.',
 'A new wave of what the economist Joseph Schumpeter famously called “creative destruction” is under way: even as central banks struggle to maintain stability by flooding markets with liquidity, credit to business and households is shrinking.',
 'It all came about in a number of ways.',
 'The UN, like the dream of European unity, was also part of the 1945 consensus.',
 'The End of 1945',
 'The Global Economy’s New Path',
 'But this scenario failed to materialize.',
 'Gold prices are extremely sensitive to global interest-rate movements.',
 'Fukushima has presented the world with a far-reaching, fundamental choice.',
 'It was Japan, the high-tech country par excellence (not the latter-day Soviet Union) that proved unable to take adequate precautions to avert disaster in four reactor blocks.',
 'Some European academics tried to argue that there was no need for US-like fiscal transfers, because any desired degree of risk sharing can, in theory, be achieved through financial markets.',
 '$10,000 Gold?',
 'One answer, of course, is a complete collapse of the US dollar.',
 '1929 or 1989?',
 'The goods we made were what economists call “rival" and “excludible" commodities.',
 'This dream quickly faded when the Cold War divided the world into two hostile blocs. But in some ways the 1945 consensus, in the West, was strengthened by Cold War politics.',
 'The first flaw is that the spending reductions are badly timed: coming as they do when the US economy is weak, they risk triggering another recession.',
 'One successful gold investor recently explained to me that stock prices languished for a more than a decade before the Dow Jones index crossed the 1,000 mark in the early 1980’s.',
 'Eichengreen traces our tepid response to the crisis to the triumph of monetarist economists, the disciples of Milton Friedman, over their Keynesian and Minskyite peers – at least when it comes to interpretations of the causes and consequences of the Great Depression.',
 "However, America's unilateral options are limited.",
 'Once it was dark, a screen was set up and Mark showed home videos from space.',
 'These aspirations were often voiced in the United Nations, founded in 1945.',
 'Then I got distracted for about 40 years.']

আপনার নিজের প্রশ্ন চেষ্টা করুন:

English sentences similar to: "The stock market fell four points."
['(Chinese) 新兴市场的号角',
 '(English) It was part of the 1945 consensus.',
 '(Russian) Брюссель. Цунами, пронёсшееся по финансовым рынкам, является глобальной катастрофой.',
 '(Arabic) هناك أربعة شروط مسبقة لتحقيق النجاح الأوروبي في أفغانستان:',
 '(Spanish) Su índice de popularidad ha caído por primera vez por debajo del 50 por ciento.',
 '(English) His ratings have dipped below 50% for the first time.',
 '(Russian) Впервые его рейтинг опустился ниже 50%.',
 '(English) As a result, markets were deregulated, making it easier to trade assets that were perceived to be safe, but were in fact not.',
 '(Arabic) وكانت التطورات التي شهدتها سوق العمل أكثر تشجيعا، فهي على النقيض من أسواق الأصول تعكس النتائج وليس التوقعات. وهنا أيضاً كانت الأخبار طيبة. فقد أصبحت سوق العمل أكثر إحكاما، حيث ظلت البطالة عند مستوى 3.5% وكانت نسبة الوظائف إلى الطلبات المقدمة فوق مستوى التعادل.',
 '(Russian) Это было частью консенсуса 1945 года.',
 '(English) Consider the advanced economies.',
 '(English) Since their articles appeared, the price of gold has moved up still further.',
 '(Russian) Тогда они не только смогут накормить свои семьи, но и начать получать рыночную прибыль и откладывать деньги на будущее.',
 '(English) Gold prices even hit a record-high $1,300 recently.',
 '(Chinese) 另一种金融危机',
 '(Russian) Европейская мечта находится в кризисе.',
 '(English) What Failed in 2008?',
 '(Spanish) Pero el acuerdo alcanzado tiene tres grandes defectos.',
 '(English) Officials underestimated tail risks.',
 '(English) Consider a couple of notorious examples.',
 '(Spanish) Los mercados financieros pueden ser frágiles y ofrecen muy poca capacidad de compartir los riesgos relacionados con el ingreso de los trabajadores, que constituye la mayor parte de la renta de cualquier economía avanzada.',
 '(Chinese) 2008年败在何处?',
 '(Spanish) Consideremos las economías avanzadas.',
 '(Spanish) Los bienes producidos se caracterizaron por ser, como señalaron algunos economistas, mercancías “rivales” y “excluyentes”.',
 '(Arabic) إغلاق الفجوة الاستراتيجية في أوروبا',
 '(English) Stalin was content to settle for an empire in Eastern Europe.',
 '(English) Intelligence assets have been redirected.',
 '(Spanish) Hoy, envalentonados por la apreciación continua, algunos están sugiriendo que el oro podría llegar incluso a superar esa cifra.',
 '(Russian) Цены на золото чрезвычайно чувствительны к мировым движениям процентных ставок.',
 '(Russian) Однако у достигнутой договоренности есть три основных недостатка.']

আরও বিষয়

বহুভাষিক

ইংরেজি, আরবি, চীনা, ডাচ, ফরাসি, জার্মান, ইতালিয়ান, জাপানি, কোরিয়ান, পোলিশ, পর্তুগিজ, রাশিয়ান, স্প্যানিশ, থাই ও তুর্কি: পরিশেষে, আমরা সমর্থিত ভাষার কোনো প্রশ্নের চেষ্টা করতে উত্সাহিত করি।

এছাড়াও, যদিও আমরা শুধুমাত্র ভাষার একটি উপসেটে সূচীবদ্ধ করেছি, আপনি যেকোনও সমর্থিত ভাষায় বিষয়বস্তু সূচী করতে পারেন।

মডেল বৈচিত্র

আমরা মেমরি, লেটেন্সি এবং/অথবা গুণমানের মতো বিভিন্ন জিনিসের জন্য অপ্টিমাইজ করা ইউনিভার্সাল এনকোডার মডেলের বৈচিত্র অফার করি। একটি উপযুক্ত খুঁজে পেতে তাদের সঙ্গে পরীক্ষা নির্দ্বিধায় দয়া করে.

নিকটতম প্রতিবেশী লাইব্রেরি

আমরা দক্ষভাবে নিকটতম প্রতিবেশীদের সন্ধান করতে Annoy ব্যবহার করি। দেখুন tradeoffs অধ্যায় অনুসন্ধান করতে (লেটেন্সি-নির্ভরশীল) গাছ (মেমরি নির্ভর) এবং আইটেম সংখ্যা সংখ্যা সম্পর্কে পড়তে --- SimpleNeighbors শুধুমাত্র গাছের সংখ্যা নিয়ন্ত্রণ করতে পারবেন, কিন্তু ব্যবহারের জ্বালানো করার কোড refactoring সরাসরি হওয়া উচিত সহজ, আমরা এই কোডটিকে সাধারণ ব্যবহারকারীর জন্য যতটা সম্ভব সহজ রাখতে চেয়েছিলাম।

বিরক্ত আপনার অ্যাপ্লিকেশনের জন্য স্কেল না হয়, তাহলে দয়া করে খুঁজে বার করো FAISS

সব সেরা আপনার বহুভাষিক শব্দার্থিক অ্যাপ্লিকেশন নির্মাণ!

[1] জে Tiedemann, 2012, Opus সমান্তরাল তথ্য, সরঞ্জাম ও ইন্টারফেস । ভাষা সম্পদ ও মূল্যায়ন (LREC 2012) সংক্রান্ত 8ম আন্তর্জাতিক সম্মেলনের কার্যক্রমে