Ver en TensorFlow.org | Ejecutar en Google Colab | Ver en GitHub | Descargar cuaderno | Ver modelo TF Hub |
El cable de 19-texto giratorio módulo de TF-Hub incrustar ( https://tfhub.dev/tensorflow/cord-19/swivel-128d/1 ) fue construido para respaldar a los investigadores que analizan los lenguajes de texto naturales relacionados con COVID-19. Estas inclusiones fueron capacitados en los títulos, autores, resúmenes, textos del cuerpo, y los títulos de referencias de artículos en el conjunto de datos CORD-19 .
En este colab vamos a:
- Analizar palabras semánticamente similares en el espacio de inserción.
- Entrene un clasificador en el conjunto de datos de SciCite utilizando las incrustaciones de CORD-19
Configuración
import functools
import itertools
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import pandas as pd
import tensorflow.compat.v1 as tf
tf.disable_eager_execution()
tf.logging.set_verbosity('ERROR')
import tensorflow_datasets as tfds
import tensorflow_hub as hub
try:
from google.colab import data_table
def display_df(df):
return data_table.DataTable(df, include_index=False)
except ModuleNotFoundError:
# If google-colab is not available, just display the raw DataFrame
def display_df(df):
return df
Analizar las incrustaciones
Comencemos analizando la incrustación calculando y trazando una matriz de correlación entre diferentes términos. Si la incrustación aprendió a capturar con éxito el significado de diferentes palabras, los vectores de incrustación de palabras semánticamente similares deberían estar muy juntos. Echemos un vistazo a algunos términos relacionados con COVID-19.
# Use the inner product between two embedding vectors as the similarity measure
def plot_correlation(labels, features):
corr = np.inner(features, features)
corr /= np.max(corr)
sns.heatmap(corr, xticklabels=labels, yticklabels=labels)
with tf.Graph().as_default():
# Load the module
query_input = tf.placeholder(tf.string)
module = hub.Module('https://tfhub.dev/tensorflow/cord-19/swivel-128d/1')
embeddings = module(query_input)
with tf.train.MonitoredTrainingSession() as sess:
# Generate embeddings for some terms
queries = [
# Related viruses
"coronavirus", "SARS", "MERS",
# Regions
"Italy", "Spain", "Europe",
# Symptoms
"cough", "fever", "throat"
]
features = sess.run(embeddings, feed_dict={query_input: queries})
plot_correlation(queries, features)
2021-11-05 11:36:25.521420: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions.
Podemos ver que la incrustación capturó con éxito el significado de los diferentes términos. Cada palabra es similar a las otras palabras de su grupo (es decir, "coronavirus" tiene una alta correlación con "SARS" y "MERS"), mientras que son diferentes de los términos de otros grupos (es decir, la similitud entre "SARS" y "España" es cerca de 0).
Ahora veamos cómo podemos usar estas incrustaciones para resolver una tarea específica.
SciCite: Clasificación por intención de citas
Esta sección muestra cómo se puede utilizar la incrustación para tareas posteriores, como la clasificación de texto. Vamos a utilizar el conjunto de datos SciCite de TensorFlow conjuntos de datos a los intentos de citación classify de trabajos académicos. Dada una oración con una cita de un artículo académico, clasifique si la intención principal de la cita es como información de antecedentes, uso de métodos o comparación de resultados.
Configurar el conjunto de datos desde TFDS
class Dataset:
"""Build a dataset from a TFDS dataset."""
def __init__(self, tfds_name, feature_name, label_name):
self.dataset_builder = tfds.builder(tfds_name)
self.dataset_builder.download_and_prepare()
self.feature_name = feature_name
self.label_name = label_name
def get_data(self, for_eval):
splits = THE_DATASET.dataset_builder.info.splits
if tfds.Split.TEST in splits:
split = tfds.Split.TEST if for_eval else tfds.Split.TRAIN
else:
SPLIT_PERCENT = 80
split = "train[{}%:]".format(SPLIT_PERCENT) if for_eval else "train[:{}%]".format(SPLIT_PERCENT)
return self.dataset_builder.as_dataset(split=split)
def num_classes(self):
return self.dataset_builder.info.features[self.label_name].num_classes
def class_names(self):
return self.dataset_builder.info.features[self.label_name].names
def preprocess_fn(self, data):
return data[self.feature_name], data[self.label_name]
def example_fn(self, data):
feature, label = self.preprocess_fn(data)
return {'feature': feature, 'label': label}, label
def get_example_data(dataset, num_examples, **data_kw):
"""Show example data"""
with tf.Session() as sess:
batched_ds = dataset.get_data(**data_kw).take(num_examples).map(dataset.preprocess_fn).batch(num_examples)
it = tf.data.make_one_shot_iterator(batched_ds).get_next()
data = sess.run(it)
return data
TFDS_NAME = 'scicite'
TEXT_FEATURE_NAME = 'string'
LABEL_NAME = 'label'
THE_DATASET = Dataset(TFDS_NAME, TEXT_FEATURE_NAME, LABEL_NAME)
Echemos un vistazo a algunos ejemplos etiquetados del conjunto de capacitación.
NUM_EXAMPLES = 20
data = get_example_data(THE_DATASET, NUM_EXAMPLES, for_eval=False)
display_df(
pd.DataFrame({
TEXT_FEATURE_NAME: [ex.decode('utf8') for ex in data[0]],
LABEL_NAME: [THE_DATASET.class_names()[x] for x in data[1]]
}))
Entrenamiento de un clasificador de intenciones de citaton
Nos entrenaremos un clasificador en el conjunto de datos SciCite utilizando un estimador. Configuremos input_fns para leer el conjunto de datos en el modelo
def preprocessed_input_fn(for_eval):
data = THE_DATASET.get_data(for_eval=for_eval)
data = data.map(THE_DATASET.example_fn, num_parallel_calls=1)
return data
def input_fn_train(params):
data = preprocessed_input_fn(for_eval=False)
data = data.repeat(None)
data = data.shuffle(1024)
data = data.batch(batch_size=params['batch_size'])
return data
def input_fn_eval(params):
data = preprocessed_input_fn(for_eval=True)
data = data.repeat(1)
data = data.batch(batch_size=params['batch_size'])
return data
def input_fn_predict(params):
data = preprocessed_input_fn(for_eval=True)
data = data.batch(batch_size=params['batch_size'])
return data
Construyamos un modelo que use las incrustaciones de CORD-19 con una capa de clasificación en la parte superior.
def model_fn(features, labels, mode, params):
# Embed the text
embed = hub.Module(params['module_name'], trainable=params['trainable_module'])
embeddings = embed(features['feature'])
# Add a linear layer on top
logits = tf.layers.dense(
embeddings, units=THE_DATASET.num_classes(), activation=None)
predictions = tf.argmax(input=logits, axis=1)
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(
mode=mode,
predictions={
'logits': logits,
'predictions': predictions,
'features': features['feature'],
'labels': features['label']
})
# Set up a multi-class classification head
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits)
loss = tf.reduce_mean(loss)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=params['learning_rate'])
train_op = optimizer.minimize(loss, global_step=tf.train.get_or_create_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
elif mode == tf.estimator.ModeKeys.EVAL:
accuracy = tf.metrics.accuracy(labels=labels, predictions=predictions)
precision = tf.metrics.precision(labels=labels, predictions=predictions)
recall = tf.metrics.recall(labels=labels, predictions=predictions)
return tf.estimator.EstimatorSpec(
mode=mode,
loss=loss,
eval_metric_ops={
'accuracy': accuracy,
'precision': precision,
'recall': recall,
})
Hiperparmetros
EMBEDDING = 'https://tfhub.dev/tensorflow/cord-19/swivel-128d/1'
TRAINABLE_MODULE = False
STEPS = 8000
EVAL_EVERY = 200
BATCH_SIZE = 10
LEARNING_RATE = 0.01
params = {
'batch_size': BATCH_SIZE,
'learning_rate': LEARNING_RATE,
'module_name': EMBEDDING,
'trainable_module': TRAINABLE_MODULE
}
Entrenar y evaluar el modelo
Entrenemos y evaluemos el modelo para ver el desempeño en la tarea SciCite
estimator = tf.estimator.Estimator(functools.partial(model_fn, params=params))
metrics = []
for step in range(0, STEPS, EVAL_EVERY):
estimator.train(input_fn=functools.partial(input_fn_train, params=params), steps=EVAL_EVERY)
step_metrics = estimator.evaluate(input_fn=functools.partial(input_fn_eval, params=params))
print('Global step {}: loss {:.3f}, accuracy {:.3f}'.format(step, step_metrics['loss'], step_metrics['accuracy']))
metrics.append(step_metrics)
2021-11-05 11:36:35.089196: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel_launcher.py:8: UserWarning: `tf.layers.dense` is deprecated and will be removed in a future version. Please use `tf.keras.layers.Dense` instead. /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/legacy_tf_layers/core.py:255: UserWarning: `layer.apply` is deprecated and will be removed in a future version. Please use `layer.__call__` method instead. return layer.apply(inputs) 2021-11-05 11:36:37.257679: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 0: loss 0.795, accuracy 0.683 2021-11-05 11:36:39.963864: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:36:42.567978: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 200: loss 0.720, accuracy 0.725 2021-11-05 11:36:44.412196: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:36:46.167367: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 400: loss 0.685, accuracy 0.735 2021-11-05 11:36:47.454541: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:36:49.859524: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 600: loss 0.657, accuracy 0.743 2021-11-05 11:36:51.159394: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:36:52.973479: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 800: loss 0.628, accuracy 0.766 2021-11-05 11:36:54.272092: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:36:56.197500: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 1000: loss 0.612, accuracy 0.771 2021-11-05 11:36:57.712701: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:36:59.448515: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 1200: loss 0.597, accuracy 0.776 2021-11-05 11:37:00.731476: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:02.656841: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 1400: loss 0.590, accuracy 0.779 2021-11-05 11:37:03.997415: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:05.749426: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 1600: loss 0.590, accuracy 0.779 2021-11-05 11:37:07.015652: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:08.900851: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 1800: loss 0.578, accuracy 0.779 2021-11-05 11:37:10.373800: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:12.102286: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 2000: loss 0.587, accuracy 0.773 2021-11-05 11:37:13.767595: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:15.731627: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 2200: loss 0.573, accuracy 0.785 2021-11-05 11:37:17.022574: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:18.746940: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 2400: loss 0.566, accuracy 0.785 2021-11-05 11:37:20.026853: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:21.980533: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 2600: loss 0.575, accuracy 0.775 2021-11-05 11:37:23.273076: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:25.039058: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 2800: loss 0.563, accuracy 0.782 2021-11-05 11:37:26.531677: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:28.482071: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 3000: loss 0.566, accuracy 0.783 2021-11-05 11:37:29.764582: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:31.474578: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 3200: loss 0.560, accuracy 0.784 2021-11-05 11:37:32.745235: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:34.614998: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 3400: loss 0.561, accuracy 0.781 2021-11-05 11:37:35.899823: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:37.566025: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 3600: loss 0.551, accuracy 0.789 2021-11-05 11:37:39.015831: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:40.902011: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 3800: loss 0.552, accuracy 0.783 2021-11-05 11:37:42.175585: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:43.887723: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 4000: loss 0.560, accuracy 0.779 2021-11-05 11:37:45.190449: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:47.072682: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 4200: loss 0.547, accuracy 0.790 2021-11-05 11:37:48.363401: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:50.068385: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 4400: loss 0.558, accuracy 0.781 2021-11-05 11:37:51.357653: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:53.266687: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 4600: loss 0.548, accuracy 0.787 2021-11-05 11:37:54.746584: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:56.482845: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 4800: loss 0.541, accuracy 0.792 2021-11-05 11:37:57.753726: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:37:59.675499: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 5000: loss 0.546, accuracy 0.784 2021-11-05 11:38:00.956026: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:38:02.706523: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 5200: loss 0.539, accuracy 0.790 2021-11-05 11:38:03.991646: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:38:05.864592: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 5400: loss 0.540, accuracy 0.788 2021-11-05 11:38:07.325910: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:38:09.053490: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 5600: loss 0.544, accuracy 0.785 2021-11-05 11:38:10.336937: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:38:12.242602: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 5800: loss 0.539, accuracy 0.790 2021-11-05 11:38:13.523562: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:38:15.234561: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 6000: loss 0.544, accuracy 0.788 2021-11-05 11:38:16.496935: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:38:18.398152: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 6200: loss 0.536, accuracy 0.789 2021-11-05 11:38:19.665205: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:38:21.576480: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 6400: loss 0.537, accuracy 0.788 2021-11-05 11:38:22.862922: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:38:24.759211: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 6600: loss 0.544, accuracy 0.790 2021-11-05 11:38:26.042820: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:38:27.790787: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 6800: loss 0.539, accuracy 0.784 2021-11-05 11:38:29.061025: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:38:30.972826: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 7000: loss 0.539, accuracy 0.788 2021-11-05 11:38:32.280235: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:38:34.021577: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 7200: loss 0.536, accuracy 0.784 2021-11-05 11:38:35.536367: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:38:37.468553: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 7400: loss 0.534, accuracy 0.785 2021-11-05 11:38:38.732636: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:38:40.459254: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 7600: loss 0.535, accuracy 0.784 2021-11-05 11:38:41.727159: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. 2021-11-05 11:38:43.631400: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. Global step 7800: loss 0.539, accuracy 0.788
global_steps = [x['global_step'] for x in metrics]
fig, axes = plt.subplots(ncols=2, figsize=(20,8))
for axes_index, metric_names in enumerate([['accuracy', 'precision', 'recall'],
['loss']]):
for metric_name in metric_names:
axes[axes_index].plot(global_steps, [x[metric_name] for x in metrics], label=metric_name)
axes[axes_index].legend()
axes[axes_index].set_xlabel("Global Step")
Podemos ver que la pérdida disminuye rápidamente mientras que, especialmente, la precisión aumenta rápidamente. Tracemos algunos ejemplos para comprobar cómo se relaciona la predicción con las etiquetas verdaderas:
predictions = estimator.predict(functools.partial(input_fn_predict, params))
first_10_predictions = list(itertools.islice(predictions, 10))
display_df(
pd.DataFrame({
TEXT_FEATURE_NAME: [pred['features'].decode('utf8') for pred in first_10_predictions],
LABEL_NAME: [THE_DATASET.class_names()[pred['labels']] for pred in first_10_predictions],
'prediction': [THE_DATASET.class_names()[pred['predictions']] for pred in first_10_predictions]
}))
2021-11-05 11:38:45.219327: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 27 into an existing graph with producer version 898. Shape inference will have run different parts of the graph with different producer versions. /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel_launcher.py:8: UserWarning: `tf.layers.dense` is deprecated and will be removed in a future version. Please use `tf.keras.layers.Dense` instead.
Podemos ver que para esta muestra aleatoria, el modelo predice la etiqueta correcta la mayoría de las veces, lo que indica que puede incrustar oraciones científicas bastante bien.
¿Que sigue?
Ahora que ha aprendido un poco más sobre las incrustaciones CORD-19 Swivel de TF-Hub, lo alentamos a participar en la competencia CORD-19 Kaggle para contribuir a obtener conocimientos científicos de los textos académicos relacionados con COVID-19.
- Participar en la Kaggle Challenge CORD-19
- Más información sobre el COVID-19 Abierto de Investigación Conjunto de datos (CORD-19)
- Consulte la documentación y más acerca de las inclusiones TF-cubo en https://tfhub.dev/tensorflow/cord-19/swivel-128d/1
- Explora el espacio incrustación CORD-19 con la TensorFlow incrustación de proyector