Chuyên gia BERT từ TF-Hub

Xem trên TensorFlow.org Chạy trong Google Colab Xem trên GitHub Tải xuống sổ ghi chép Xem các mẫu TF Hub

Chuyên mục này trình bày cách:

  • Mô hình tải Bert từ TensorFlow Hub đã được đào tạo về nhiệm vụ khác nhau bao gồm MNLI, Squad, và PubMed
  • Sử dụng mô hình tiền xử lý phù hợp để mã hóa văn bản thô và chuyển đổi nó thành id
  • Tạo đầu ra tổng hợp và chuỗi từ id đầu vào mã thông báo bằng cách sử dụng mô hình đã tải
  • Xem xét sự giống nhau về ngữ nghĩa của các kết quả đầu ra được gộp chung của các câu khác nhau

Lưu ý: Chuyên mục này nên được chạy với thời gian chạy GPU

Thiết lập và nhập khẩu

pip3 install --quiet tensorflow
pip3 install --quiet tensorflow_text
import seaborn as sns
from sklearn.metrics import pairwise

import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_text as text  # Imports TF ops for preprocessing.

Định cấu hình mô hình

Câu phù hợp

Hãy lấy một số câu từ Wikipedia để chạy qua mô hình

sentences = [
  "Here We Go Then, You And I is a 1999 album by Norwegian pop artist Morten Abel. It was Abel's second CD as a solo artist.",
  "The album went straight to number one on the Norwegian album chart, and sold to double platinum.",
  "Among the singles released from the album were the songs \"Be My Lover\" and \"Hard To Stay Awake\".",
  "Riccardo Zegna is an Italian jazz musician.",
  "Rajko Maksimović is a composer, writer, and music pedagogue.",
  "One of the most significant Serbian composers of our time, Maksimović has been and remains active in creating works for different ensembles.",
  "Ceylon spinach is a common name for several plants and may refer to: Basella alba Talinum fruticosum",
  "A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth.",
  "A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.",
]

Chạy mô hình

Chúng tôi sẽ tải mô hình BERT từ TF-Hub, mã hóa các câu của chúng tôi bằng cách sử dụng mô hình tiền xử lý phù hợp từ TF-Hub, sau đó cung cấp các câu được mã hóa cho mô hình. Để giữ cho chuyên mục này nhanh chóng và đơn giản, chúng tôi khuyên bạn nên chạy trên GPU.

Tới RuntimeThay đổi kiểu thời gian chạy để đảm bảo rằng GPU được chọn

preprocess = hub.load(PREPROCESS_MODEL)
bert = hub.load(BERT_MODEL)
inputs = preprocess(sentences)
outputs = bert(inputs)
print("Sentences:")
print(sentences)

print("\nBERT inputs:")
print(inputs)

print("\nPooled embeddings:")
print(outputs["pooled_output"])

print("\nPer token embeddings:")
print(outputs["sequence_output"])
Sentences:
["Here We Go Then, You And I is a 1999 album by Norwegian pop artist Morten Abel. It was Abel's second CD as a solo artist.", 'The album went straight to number one on the Norwegian album chart, and sold to double platinum.', 'Among the singles released from the album were the songs "Be My Lover" and "Hard To Stay Awake".', 'Riccardo Zegna is an Italian jazz musician.', 'Rajko Maksimović is a composer, writer, and music pedagogue.', 'One of the most significant Serbian composers of our time, Maksimović has been and remains active in creating works for different ensembles.', 'Ceylon spinach is a common name for several plants and may refer to: Basella alba Talinum fruticosum', 'A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth.', "A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth."]

BERT inputs:
{'input_word_ids': <tf.Tensor: shape=(9, 128), dtype=int32, numpy=
array([[  101,  2182,  2057, ...,     0,     0,     0],
       [  101,  1996,  2201, ...,     0,     0,     0],
       [  101,  2426,  1996, ...,     0,     0,     0],
       ...,
       [  101, 16447,  6714, ...,     0,     0,     0],
       [  101,  1037,  5943, ...,     0,     0,     0],
       [  101,  1037,  7704, ...,     0,     0,     0]], dtype=int32)>, 'input_type_ids': <tf.Tensor: shape=(9, 128), dtype=int32, numpy=
array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int32)>, 'input_mask': <tf.Tensor: shape=(9, 128), dtype=int32, numpy=
array([[1, 1, 1, ..., 0, 0, 0],
       [1, 1, 1, ..., 0, 0, 0],
       [1, 1, 1, ..., 0, 0, 0],
       ...,
       [1, 1, 1, ..., 0, 0, 0],
       [1, 1, 1, ..., 0, 0, 0],
       [1, 1, 1, ..., 0, 0, 0]], dtype=int32)>}

Pooled embeddings:
tf.Tensor(
[[ 0.7975967  -0.48580563  0.49781477 ... -0.3448825   0.3972752
  -0.2063976 ]
 [ 0.57120323 -0.41205275  0.7048914  ... -0.35185075  0.19032307
  -0.4041895 ]
 [-0.699383    0.1586691   0.06569938 ... -0.0623244  -0.81550187
  -0.07923658]
 ...
 [-0.35727128  0.7708977   0.1575658  ...  0.44185698 -0.8644815
   0.04504769]
 [ 0.91077     0.41501352  0.5606345  ... -0.49263868  0.39640594
  -0.05036103]
 [ 0.90502906 -0.15505145  0.72672117 ... -0.34734493  0.5052651
  -0.19543159]], shape=(9, 768), dtype=float32)

Per token embeddings:
tf.Tensor(
[[[ 1.0919718e+00 -5.3055555e-01  5.4639673e-01 ... -3.5962367e-01
    4.2040938e-01 -2.0940571e-01]
  [ 1.0143853e+00  7.8079259e-01  8.5375798e-01 ...  5.5282074e-01
   -1.1245787e+00  5.6027526e-01]
  [ 7.8862888e-01  7.7776514e-02  9.5150793e-01 ... -1.9075295e-01
    5.9206045e-01  6.1910731e-01]
  ...
  [-3.2203159e-01 -4.2521179e-01 -1.2823829e-01 ... -3.9094865e-01
   -7.9097575e-01  4.2236605e-01]
  [-3.1039350e-02  2.3985808e-01 -2.1994556e-01 ... -1.1440065e-01
   -1.2680519e+00 -1.6136172e-01]
  [-4.2063516e-01  5.4972863e-01 -3.2444897e-01 ... -1.8478543e-01
   -1.1342984e+00 -5.8974154e-02]]

 [[ 6.4930701e-01 -4.3808129e-01  8.7695646e-01 ... -3.6755449e-01
    1.9267237e-01 -4.2864648e-01]
  [-1.1248719e+00  2.9931602e-01  1.1799662e+00 ...  4.8729455e-01
    5.3400528e-01  2.2836192e-01]
  [-2.7057338e-01  3.2351881e-02  1.0425698e+00 ...  5.8993816e-01
    1.5367918e+00  5.8425623e-01]
  ...
  [-1.4762508e+00  1.8239072e-01  5.5875197e-02 ... -1.6733241e+00
   -6.7398834e-01 -7.2449744e-01]
  [-1.5138135e+00  5.8184558e-01  1.6141933e-01 ... -1.2640834e+00
   -4.0272138e-01 -9.7197199e-01]
  [-4.7153085e-01  2.2817247e-01  5.2776134e-01 ... -7.5483751e-01
   -9.0903056e-01 -1.6954714e-01]]

 [[-8.6609173e-01  1.6002113e-01  6.5794155e-02 ... -6.2405296e-02
   -1.1432388e+00 -7.9403043e-02]
  [ 7.7117836e-01  7.0804822e-01  1.1350115e-01 ...  7.8831035e-01
   -3.1438148e-01 -9.7487110e-01]
  [-4.4002479e-01 -3.0059522e-01  3.5479453e-01 ...  7.9739094e-02
   -4.7393662e-01 -1.1001848e+00]
  ...
  [-1.0205302e+00  2.6938522e-01 -4.7310370e-01 ... -6.6319543e-01
   -1.4579915e+00 -3.4665459e-01]
  [-9.7003460e-01 -4.5014530e-02 -5.9779549e-01 ... -3.0526626e-01
   -1.2744237e+00 -2.8051588e-01]
  [-7.3144108e-01  1.7699355e-01 -4.6257967e-01 ... -1.6062307e-01
   -1.6346070e+00 -3.2060605e-01]]

 ...

 [[-3.7375441e-01  1.0225365e+00  1.5888955e-01 ...  4.7453594e-01
   -1.3108152e+00  4.5078207e-02]
  [-4.1589144e-01  5.0019276e-01 -4.5844245e-01 ...  4.1482472e-01
   -6.2065876e-01 -7.1555024e-01]
  [-1.2504390e+00  5.0936425e-01 -5.7103634e-01 ...  3.5491806e-01
    2.4368477e-01 -2.0577228e+00]
  ...
  [ 1.3393667e-01  1.1859171e+00 -2.2169831e-01 ... -8.1946820e-01
   -1.6737309e+00 -3.9692628e-01]
  [-3.3662504e-01  1.6556220e+00 -3.7812781e-01 ... -9.6745497e-01
   -1.4801039e+00 -8.3330971e-01]
  [-2.2649485e-01  1.6178465e+00 -6.7044652e-01 ... -4.9078423e-01
   -1.4535751e+00 -7.1707505e-01]]

 [[ 1.5320227e+00  4.4165283e-01  6.3375801e-01 ... -5.3953874e-01
    4.1937760e-01 -5.0403677e-02]
  [ 8.9377600e-01  8.9395344e-01  3.0626178e-02 ...  5.9039176e-02
   -2.0649448e-01 -8.4811246e-01]
  [-1.8557828e-02  1.0479081e+00 -1.3329606e+00 ... -1.3869843e-01
   -3.7879568e-01 -4.9068305e-01]
  ...
  [ 1.4275622e+00  1.0696816e-01 -4.0635362e-02 ... -3.1778324e-02
   -4.1460156e-01  7.0036823e-01]
  [ 1.1286633e+00  1.4547651e-01 -6.1372471e-01 ...  4.7491628e-01
   -3.9852056e-01  4.3124324e-01]
  [ 1.4393284e+00  1.8030575e-01 -4.2854339e-01 ... -2.5022790e-01
   -1.0000544e+00  3.5985461e-01]]

 [[ 1.4993407e+00 -1.5631223e-01  9.2174333e-01 ... -3.6242130e-01
    5.5635113e-01 -1.9797830e-01]
  [ 1.1110539e+00  3.6651433e-01  3.5505858e-01 ... -5.4297698e-01
    1.4471304e-01 -3.1675813e-01]
  [ 2.4048802e-01  3.8115788e-01 -5.9182465e-01 ...  3.7410852e-01
   -5.9829473e-01 -1.0166264e+00]
  ...
  [ 1.0158644e+00  5.0260526e-01  1.0737082e-01 ... -9.5642781e-01
   -4.1039532e-01 -2.6760197e-01]
  [ 1.1848929e+00  6.5479934e-01  1.0166168e-03 ... -8.6154389e-01
   -8.8036627e-02 -3.0636966e-01]
  [ 1.2669108e+00  4.7768092e-01  6.6289604e-03 ... -1.1585802e+00
   -7.0675731e-02 -1.8678737e-01]]], shape=(9, 128, 768), dtype=float32)

Sự tương đồng về ngữ nghĩa

Bây giờ chúng ta hãy nhìn vào pooled_output embeddings câu của chúng tôi và so sánh mức độ giống nhau của chúng qua câu.

Chức năng trợ giúp

plot_similarity(outputs["pooled_output"], sentences)

png

Tìm hiểu thêm