Esperti BERT di TF-Hub

Visualizza su TensorFlow.org Esegui in Google Colab Visualizza su GitHub Scarica taccuino Vedi i modelli di mozzo TF

Questa collaborazione mostra come:

  • Modelli di carico BERT da tensorflow Hub che sono stati addestrati in compiti diversi, tra cui MnlI, Squad, e PubMed
  • Usa un modello di pre-elaborazione corrispondente per tokenizzare il testo non elaborato e convertirlo in ID
  • Genera l'output in pool e in sequenza dagli ID di input del token utilizzando il modello caricato
  • Guarda la somiglianza semantica degli output aggregati di diverse frasi

Nota: questa collaborazione dovrebbe essere eseguita con un runtime GPU

Configurazione e importazione

pip3 install --quiet tensorflow
pip3 install --quiet tensorflow_text
import seaborn as sns
from sklearn.metrics import pairwise

import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_text as text  # Imports TF ops for preprocessing.

Configura il modello

Frasi

Prendiamo alcune frasi da Wikipedia per scorrere il modello

sentences = [
  "Here We Go Then, You And I is a 1999 album by Norwegian pop artist Morten Abel. It was Abel's second CD as a solo artist.",
  "The album went straight to number one on the Norwegian album chart, and sold to double platinum.",
  "Among the singles released from the album were the songs \"Be My Lover\" and \"Hard To Stay Awake\".",
  "Riccardo Zegna is an Italian jazz musician.",
  "Rajko Maksimović is a composer, writer, and music pedagogue.",
  "One of the most significant Serbian composers of our time, Maksimović has been and remains active in creating works for different ensembles.",
  "Ceylon spinach is a common name for several plants and may refer to: Basella alba Talinum fruticosum",
  "A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth.",
  "A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.",
]

Esegui il modello

Caricheremo il modello BERT da TF-Hub, tokenizziamo le nostre frasi utilizzando il modello di pre-elaborazione corrispondente da TF-Hub, quindi inseriamo le frasi tokenizzate nel modello. Per mantenere questa collaborazione veloce e semplice, ti consigliamo di eseguire su GPU.

Vai a runtimeCambia il tipo di esecuzione per assicurarsi che sia selezionato GPU

preprocess = hub.load(PREPROCESS_MODEL)
bert = hub.load(BERT_MODEL)
inputs = preprocess(sentences)
outputs = bert(inputs)
print("Sentences:")
print(sentences)

print("\nBERT inputs:")
print(inputs)

print("\nPooled embeddings:")
print(outputs["pooled_output"])

print("\nPer token embeddings:")
print(outputs["sequence_output"])
Sentences:
["Here We Go Then, You And I is a 1999 album by Norwegian pop artist Morten Abel. It was Abel's second CD as a solo artist.", 'The album went straight to number one on the Norwegian album chart, and sold to double platinum.', 'Among the singles released from the album were the songs "Be My Lover" and "Hard To Stay Awake".', 'Riccardo Zegna is an Italian jazz musician.', 'Rajko Maksimović is a composer, writer, and music pedagogue.', 'One of the most significant Serbian composers of our time, Maksimović has been and remains active in creating works for different ensembles.', 'Ceylon spinach is a common name for several plants and may refer to: Basella alba Talinum fruticosum', 'A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth.', "A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth."]

BERT inputs:
{'input_word_ids': <tf.Tensor: shape=(9, 128), dtype=int32, numpy=
array([[  101,  2182,  2057, ...,     0,     0,     0],
       [  101,  1996,  2201, ...,     0,     0,     0],
       [  101,  2426,  1996, ...,     0,     0,     0],
       ...,
       [  101, 16447,  6714, ...,     0,     0,     0],
       [  101,  1037,  5943, ...,     0,     0,     0],
       [  101,  1037,  7704, ...,     0,     0,     0]], dtype=int32)>, 'input_type_ids': <tf.Tensor: shape=(9, 128), dtype=int32, numpy=
array([[0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]], dtype=int32)>, 'input_mask': <tf.Tensor: shape=(9, 128), dtype=int32, numpy=
array([[1, 1, 1, ..., 0, 0, 0],
       [1, 1, 1, ..., 0, 0, 0],
       [1, 1, 1, ..., 0, 0, 0],
       ...,
       [1, 1, 1, ..., 0, 0, 0],
       [1, 1, 1, ..., 0, 0, 0],
       [1, 1, 1, ..., 0, 0, 0]], dtype=int32)>}

Pooled embeddings:
tf.Tensor(
[[ 0.7975967  -0.48580563  0.49781477 ... -0.3448825   0.3972752
  -0.2063976 ]
 [ 0.57120323 -0.41205275  0.7048914  ... -0.35185075  0.19032307
  -0.4041895 ]
 [-0.699383    0.1586691   0.06569938 ... -0.0623244  -0.81550187
  -0.07923658]
 ...
 [-0.35727128  0.7708977   0.1575658  ...  0.44185698 -0.8644815
   0.04504769]
 [ 0.91077     0.41501352  0.5606345  ... -0.49263868  0.39640594
  -0.05036103]
 [ 0.90502906 -0.15505145  0.72672117 ... -0.34734493  0.5052651
  -0.19543159]], shape=(9, 768), dtype=float32)

Per token embeddings:
tf.Tensor(
[[[ 1.0919718e+00 -5.3055555e-01  5.4639673e-01 ... -3.5962367e-01
    4.2040938e-01 -2.0940571e-01]
  [ 1.0143853e+00  7.8079259e-01  8.5375798e-01 ...  5.5282074e-01
   -1.1245787e+00  5.6027526e-01]
  [ 7.8862888e-01  7.7776514e-02  9.5150793e-01 ... -1.9075295e-01
    5.9206045e-01  6.1910731e-01]
  ...
  [-3.2203159e-01 -4.2521179e-01 -1.2823829e-01 ... -3.9094865e-01
   -7.9097575e-01  4.2236605e-01]
  [-3.1039350e-02  2.3985808e-01 -2.1994556e-01 ... -1.1440065e-01
   -1.2680519e+00 -1.6136172e-01]
  [-4.2063516e-01  5.4972863e-01 -3.2444897e-01 ... -1.8478543e-01
   -1.1342984e+00 -5.8974154e-02]]

 [[ 6.4930701e-01 -4.3808129e-01  8.7695646e-01 ... -3.6755449e-01
    1.9267237e-01 -4.2864648e-01]
  [-1.1248719e+00  2.9931602e-01  1.1799662e+00 ...  4.8729455e-01
    5.3400528e-01  2.2836192e-01]
  [-2.7057338e-01  3.2351881e-02  1.0425698e+00 ...  5.8993816e-01
    1.5367918e+00  5.8425623e-01]
  ...
  [-1.4762508e+00  1.8239072e-01  5.5875197e-02 ... -1.6733241e+00
   -6.7398834e-01 -7.2449744e-01]
  [-1.5138135e+00  5.8184558e-01  1.6141933e-01 ... -1.2640834e+00
   -4.0272138e-01 -9.7197199e-01]
  [-4.7153085e-01  2.2817247e-01  5.2776134e-01 ... -7.5483751e-01
   -9.0903056e-01 -1.6954714e-01]]

 [[-8.6609173e-01  1.6002113e-01  6.5794155e-02 ... -6.2405296e-02
   -1.1432388e+00 -7.9403043e-02]
  [ 7.7117836e-01  7.0804822e-01  1.1350115e-01 ...  7.8831035e-01
   -3.1438148e-01 -9.7487110e-01]
  [-4.4002479e-01 -3.0059522e-01  3.5479453e-01 ...  7.9739094e-02
   -4.7393662e-01 -1.1001848e+00]
  ...
  [-1.0205302e+00  2.6938522e-01 -4.7310370e-01 ... -6.6319543e-01
   -1.4579915e+00 -3.4665459e-01]
  [-9.7003460e-01 -4.5014530e-02 -5.9779549e-01 ... -3.0526626e-01
   -1.2744237e+00 -2.8051588e-01]
  [-7.3144108e-01  1.7699355e-01 -4.6257967e-01 ... -1.6062307e-01
   -1.6346070e+00 -3.2060605e-01]]

 ...

 [[-3.7375441e-01  1.0225365e+00  1.5888955e-01 ...  4.7453594e-01
   -1.3108152e+00  4.5078207e-02]
  [-4.1589144e-01  5.0019276e-01 -4.5844245e-01 ...  4.1482472e-01
   -6.2065876e-01 -7.1555024e-01]
  [-1.2504390e+00  5.0936425e-01 -5.7103634e-01 ...  3.5491806e-01
    2.4368477e-01 -2.0577228e+00]
  ...
  [ 1.3393667e-01  1.1859171e+00 -2.2169831e-01 ... -8.1946820e-01
   -1.6737309e+00 -3.9692628e-01]
  [-3.3662504e-01  1.6556220e+00 -3.7812781e-01 ... -9.6745497e-01
   -1.4801039e+00 -8.3330971e-01]
  [-2.2649485e-01  1.6178465e+00 -6.7044652e-01 ... -4.9078423e-01
   -1.4535751e+00 -7.1707505e-01]]

 [[ 1.5320227e+00  4.4165283e-01  6.3375801e-01 ... -5.3953874e-01
    4.1937760e-01 -5.0403677e-02]
  [ 8.9377600e-01  8.9395344e-01  3.0626178e-02 ...  5.9039176e-02
   -2.0649448e-01 -8.4811246e-01]
  [-1.8557828e-02  1.0479081e+00 -1.3329606e+00 ... -1.3869843e-01
   -3.7879568e-01 -4.9068305e-01]
  ...
  [ 1.4275622e+00  1.0696816e-01 -4.0635362e-02 ... -3.1778324e-02
   -4.1460156e-01  7.0036823e-01]
  [ 1.1286633e+00  1.4547651e-01 -6.1372471e-01 ...  4.7491628e-01
   -3.9852056e-01  4.3124324e-01]
  [ 1.4393284e+00  1.8030575e-01 -4.2854339e-01 ... -2.5022790e-01
   -1.0000544e+00  3.5985461e-01]]

 [[ 1.4993407e+00 -1.5631223e-01  9.2174333e-01 ... -3.6242130e-01
    5.5635113e-01 -1.9797830e-01]
  [ 1.1110539e+00  3.6651433e-01  3.5505858e-01 ... -5.4297698e-01
    1.4471304e-01 -3.1675813e-01]
  [ 2.4048802e-01  3.8115788e-01 -5.9182465e-01 ...  3.7410852e-01
   -5.9829473e-01 -1.0166264e+00]
  ...
  [ 1.0158644e+00  5.0260526e-01  1.0737082e-01 ... -9.5642781e-01
   -4.1039532e-01 -2.6760197e-01]
  [ 1.1848929e+00  6.5479934e-01  1.0166168e-03 ... -8.6154389e-01
   -8.8036627e-02 -3.0636966e-01]
  [ 1.2669108e+00  4.7768092e-01  6.6289604e-03 ... -1.1585802e+00
   -7.0675731e-02 -1.8678737e-01]]], shape=(9, 128, 768), dtype=float32)

Somiglianza semantica

Ora diamo uno sguardo ai pooled_output incastri delle nostre frasi e confrontare quanto sono simili in tutta frasi.

Funzioni di supporto

plot_similarity(outputs["pooled_output"], sentences)

png

Scopri di più