Ver en TensorFlow.org | Ejecutar en Google Colab | Ver en GitHub | Descargar cuaderno | Ver modelos TF Hub |
Este colab demuestra cómo:
- Modelos de carga de BERT TensorFlow Hub que han sido entrenados en diferentes tareas, como MnlI, equipo, y en PubMed
- Utilice un modelo de preprocesamiento coincidente para tokenizar texto sin formato y convertirlo en identificadores
- Genere la salida agrupada y en secuencia a partir de los ID de entrada del token utilizando el modelo cargado
- Observe la similitud semántica de las salidas agrupadas de diferentes oraciones
Nota: este colab debe ejecutarse con un tiempo de ejecución de GPU
Configurar e importar
pip3 install --quiet tensorflow
pip3 install --quiet tensorflow_text
import seaborn as sns
from sklearn.metrics import pairwise
import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_text as text # Imports TF ops for preprocessing.
Configurar el modelo
BERT_MODEL = "https://tfhub.dev/google/experts/bert/wiki_books/2" # @param {type: "string"} ["https://tfhub.dev/google/experts/bert/wiki_books/2", "https://tfhub.dev/google/experts/bert/wiki_books/mnli/2", "https://tfhub.dev/google/experts/bert/wiki_books/qnli/2", "https://tfhub.dev/google/experts/bert/wiki_books/qqp/2", "https://tfhub.dev/google/experts/bert/wiki_books/squad2/2", "https://tfhub.dev/google/experts/bert/wiki_books/sst2/2", "https://tfhub.dev/google/experts/bert/pubmed/2", "https://tfhub.dev/google/experts/bert/pubmed/squad2/2"]
# Preprocessing must match the model, but all the above use the same.
PREPROCESS_MODEL = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3"
Frases
Tomemos algunas oraciones de Wikipedia para recorrer el modelo.
sentences = [
"Here We Go Then, You And I is a 1999 album by Norwegian pop artist Morten Abel. It was Abel's second CD as a solo artist.",
"The album went straight to number one on the Norwegian album chart, and sold to double platinum.",
"Among the singles released from the album were the songs \"Be My Lover\" and \"Hard To Stay Awake\".",
"Riccardo Zegna is an Italian jazz musician.",
"Rajko Maksimović is a composer, writer, and music pedagogue.",
"One of the most significant Serbian composers of our time, Maksimović has been and remains active in creating works for different ensembles.",
"Ceylon spinach is a common name for several plants and may refer to: Basella alba Talinum fruticosum",
"A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth.",
"A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.",
]
Ejecuta el modelo
Cargaremos el modelo BERT de TF-Hub, tokenizaremos nuestras oraciones usando el modelo de preprocesamiento coincidente de TF-Hub, luego alimentaremos las oraciones tokenizadas al modelo. Para que este colab sea rápido y sencillo, recomendamos ejecutarlo en GPU.
Ir a Tiempo de ejecución → Cambiar el tipo de tiempo de ejecución para asegurarse de que se selecciona la GPU
preprocess = hub.load(PREPROCESS_MODEL)
bert = hub.load(BERT_MODEL)
inputs = preprocess(sentences)
outputs = bert(inputs)
print("Sentences:")
print(sentences)
print("\nBERT inputs:")
print(inputs)
print("\nPooled embeddings:")
print(outputs["pooled_output"])
print("\nPer token embeddings:")
print(outputs["sequence_output"])
Sentences: ["Here We Go Then, You And I is a 1999 album by Norwegian pop artist Morten Abel. It was Abel's second CD as a solo artist.", 'The album went straight to number one on the Norwegian album chart, and sold to double platinum.', 'Among the singles released from the album were the songs "Be My Lover" and "Hard To Stay Awake".', 'Riccardo Zegna is an Italian jazz musician.', 'Rajko Maksimović is a composer, writer, and music pedagogue.', 'One of the most significant Serbian composers of our time, Maksimović has been and remains active in creating works for different ensembles.', 'Ceylon spinach is a common name for several plants and may refer to: Basella alba Talinum fruticosum', 'A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth.', "A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth."] BERT inputs: {'input_word_ids': <tf.Tensor: shape=(9, 128), dtype=int32, numpy= array([[ 101, 2182, 2057, ..., 0, 0, 0], [ 101, 1996, 2201, ..., 0, 0, 0], [ 101, 2426, 1996, ..., 0, 0, 0], ..., [ 101, 16447, 6714, ..., 0, 0, 0], [ 101, 1037, 5943, ..., 0, 0, 0], [ 101, 1037, 7704, ..., 0, 0, 0]], dtype=int32)>, 'input_type_ids': <tf.Tensor: shape=(9, 128), dtype=int32, numpy= array([[0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], ..., [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0]], dtype=int32)>, 'input_mask': <tf.Tensor: shape=(9, 128), dtype=int32, numpy= array([[1, 1, 1, ..., 0, 0, 0], [1, 1, 1, ..., 0, 0, 0], [1, 1, 1, ..., 0, 0, 0], ..., [1, 1, 1, ..., 0, 0, 0], [1, 1, 1, ..., 0, 0, 0], [1, 1, 1, ..., 0, 0, 0]], dtype=int32)>} Pooled embeddings: tf.Tensor( [[ 0.7975967 -0.48580563 0.49781477 ... -0.3448825 0.3972752 -0.2063976 ] [ 0.57120323 -0.41205275 0.7048914 ... -0.35185075 0.19032307 -0.4041895 ] [-0.699383 0.1586691 0.06569938 ... -0.0623244 -0.81550187 -0.07923658] ... [-0.35727128 0.7708977 0.1575658 ... 0.44185698 -0.8644815 0.04504769] [ 0.91077 0.41501352 0.5606345 ... -0.49263868 0.39640594 -0.05036103] [ 0.90502906 -0.15505145 0.72672117 ... -0.34734493 0.5052651 -0.19543159]], shape=(9, 768), dtype=float32) Per token embeddings: tf.Tensor( [[[ 1.0919718e+00 -5.3055555e-01 5.4639673e-01 ... -3.5962367e-01 4.2040938e-01 -2.0940571e-01] [ 1.0143853e+00 7.8079259e-01 8.5375798e-01 ... 5.5282074e-01 -1.1245787e+00 5.6027526e-01] [ 7.8862888e-01 7.7776514e-02 9.5150793e-01 ... -1.9075295e-01 5.9206045e-01 6.1910731e-01] ... [-3.2203159e-01 -4.2521179e-01 -1.2823829e-01 ... -3.9094865e-01 -7.9097575e-01 4.2236605e-01] [-3.1039350e-02 2.3985808e-01 -2.1994556e-01 ... -1.1440065e-01 -1.2680519e+00 -1.6136172e-01] [-4.2063516e-01 5.4972863e-01 -3.2444897e-01 ... -1.8478543e-01 -1.1342984e+00 -5.8974154e-02]] [[ 6.4930701e-01 -4.3808129e-01 8.7695646e-01 ... -3.6755449e-01 1.9267237e-01 -4.2864648e-01] [-1.1248719e+00 2.9931602e-01 1.1799662e+00 ... 4.8729455e-01 5.3400528e-01 2.2836192e-01] [-2.7057338e-01 3.2351881e-02 1.0425698e+00 ... 5.8993816e-01 1.5367918e+00 5.8425623e-01] ... [-1.4762508e+00 1.8239072e-01 5.5875197e-02 ... -1.6733241e+00 -6.7398834e-01 -7.2449744e-01] [-1.5138135e+00 5.8184558e-01 1.6141933e-01 ... -1.2640834e+00 -4.0272138e-01 -9.7197199e-01] [-4.7153085e-01 2.2817247e-01 5.2776134e-01 ... -7.5483751e-01 -9.0903056e-01 -1.6954714e-01]] [[-8.6609173e-01 1.6002113e-01 6.5794155e-02 ... -6.2405296e-02 -1.1432388e+00 -7.9403043e-02] [ 7.7117836e-01 7.0804822e-01 1.1350115e-01 ... 7.8831035e-01 -3.1438148e-01 -9.7487110e-01] [-4.4002479e-01 -3.0059522e-01 3.5479453e-01 ... 7.9739094e-02 -4.7393662e-01 -1.1001848e+00] ... [-1.0205302e+00 2.6938522e-01 -4.7310370e-01 ... -6.6319543e-01 -1.4579915e+00 -3.4665459e-01] [-9.7003460e-01 -4.5014530e-02 -5.9779549e-01 ... -3.0526626e-01 -1.2744237e+00 -2.8051588e-01] [-7.3144108e-01 1.7699355e-01 -4.6257967e-01 ... -1.6062307e-01 -1.6346070e+00 -3.2060605e-01]] ... [[-3.7375441e-01 1.0225365e+00 1.5888955e-01 ... 4.7453594e-01 -1.3108152e+00 4.5078207e-02] [-4.1589144e-01 5.0019276e-01 -4.5844245e-01 ... 4.1482472e-01 -6.2065876e-01 -7.1555024e-01] [-1.2504390e+00 5.0936425e-01 -5.7103634e-01 ... 3.5491806e-01 2.4368477e-01 -2.0577228e+00] ... [ 1.3393667e-01 1.1859171e+00 -2.2169831e-01 ... -8.1946820e-01 -1.6737309e+00 -3.9692628e-01] [-3.3662504e-01 1.6556220e+00 -3.7812781e-01 ... -9.6745497e-01 -1.4801039e+00 -8.3330971e-01] [-2.2649485e-01 1.6178465e+00 -6.7044652e-01 ... -4.9078423e-01 -1.4535751e+00 -7.1707505e-01]] [[ 1.5320227e+00 4.4165283e-01 6.3375801e-01 ... -5.3953874e-01 4.1937760e-01 -5.0403677e-02] [ 8.9377600e-01 8.9395344e-01 3.0626178e-02 ... 5.9039176e-02 -2.0649448e-01 -8.4811246e-01] [-1.8557828e-02 1.0479081e+00 -1.3329606e+00 ... -1.3869843e-01 -3.7879568e-01 -4.9068305e-01] ... [ 1.4275622e+00 1.0696816e-01 -4.0635362e-02 ... -3.1778324e-02 -4.1460156e-01 7.0036823e-01] [ 1.1286633e+00 1.4547651e-01 -6.1372471e-01 ... 4.7491628e-01 -3.9852056e-01 4.3124324e-01] [ 1.4393284e+00 1.8030575e-01 -4.2854339e-01 ... -2.5022790e-01 -1.0000544e+00 3.5985461e-01]] [[ 1.4993407e+00 -1.5631223e-01 9.2174333e-01 ... -3.6242130e-01 5.5635113e-01 -1.9797830e-01] [ 1.1110539e+00 3.6651433e-01 3.5505858e-01 ... -5.4297698e-01 1.4471304e-01 -3.1675813e-01] [ 2.4048802e-01 3.8115788e-01 -5.9182465e-01 ... 3.7410852e-01 -5.9829473e-01 -1.0166264e+00] ... [ 1.0158644e+00 5.0260526e-01 1.0737082e-01 ... -9.5642781e-01 -4.1039532e-01 -2.6760197e-01] [ 1.1848929e+00 6.5479934e-01 1.0166168e-03 ... -8.6154389e-01 -8.8036627e-02 -3.0636966e-01] [ 1.2669108e+00 4.7768092e-01 6.6289604e-03 ... -1.1585802e+00 -7.0675731e-02 -1.8678737e-01]]], shape=(9, 128, 768), dtype=float32)
Similitud semántica
Ahora vamos a echar un vistazo a las pooled_output
incrustaciones de nuestras oraciones y comparar lo similares que están al otro lado oraciones.
Funciones auxiliares
def plot_similarity(features, labels):
"""Plot a similarity matrix of the embeddings."""
cos_sim = pairwise.cosine_similarity(features)
sns.set(font_scale=1.2)
cbar_kws=dict(use_gridspec=False, location="left")
g = sns.heatmap(
cos_sim, xticklabels=labels, yticklabels=labels,
vmin=0, vmax=1, cmap="Blues", cbar_kws=cbar_kws)
g.tick_params(labelright=True, labelleft=False)
g.set_yticklabels(labels, rotation=0)
g.set_title("Semantic Textual Similarity")
plot_similarity(outputs["pooled_output"], sentences)
Aprende más
- Encuentra más modelos BERT en TensorFlow Hub
- Este portátil demuestra la inferencia simple, con el BERT, se puede encontrar un tutorial más avanzado sobre el BERT puesta a punto en tensorflow.org/official_models/fine_tuning_bert
- Se utilizó un solo chip de la GPU para correr el modelo, se puede aprender más acerca de cómo el uso de modelos de carga tf.distribute en tensorflow.org/tutorials/distribute/save_and_load