TensorFlow.orgで表示 | GoogleColabで実行 | GitHubでソースを表示 | ノートブックをダウンロード |
このガイドでは、 TPUで実行されているワークフローをTensorFlow1のTPUEstimator
TPUStrategy
移行する方法を示します。
- TensorFlow 1では、
tf.compat.v1.estimator.tpu.TPUEstimator
APIを使用して、モデルをトレーニングおよび評価したり、推論を実行してモデルを(クラウド)TPUに保存したりできます。 - TensorFlow 2では、TPUとTPUポッド(専用の高速ネットワークインターフェイスで接続されたTPUデバイスのコレクション)で同期トレーニングを実行するには、TPU配布戦略
tf.distribute.TPUStrategy
)を使用する必要があります。この戦略は、モデル構築(tf.keras.Model
)、オプティマイザー(tf.keras.optimizers.Optimizer
)、トレーニング(Model.fit
)などのKeras APIと、カスタムトレーニングループ(tf.function
を使用)で機能します。tf.function
およびtf.GradientTape
)。
エンドツーエンドのTensorFlow2の例については、「TPUの使用」ガイド(つまり、「TPUでの分類」セクション)と、「 TPUでBERTを使用してGLUEを解決する」チュートリアルを確認してください。また、 TPUStrategy
を含むすべてのTensorFlow配布戦略をカバーする分散トレーニングガイドが役立つ場合があります。
設定
インポートとデモンストレーション用の簡単なデータセットから始めます。
import tensorflow as tf
import tensorflow.compat.v1 as tf1
/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/requests/__init__.py:104: RequestsDependencyWarning: urllib3 (1.26.8) or chardet (2.3.0)/charset_normalizer (2.0.11) doesn't match a supported version! RequestsDependencyWarning)
features = [[1., 1.5]]
labels = [[0.3]]
eval_features = [[4., 4.5]]
eval_labels = [[0.8]]
TensorFlow 1:TPUEstimatorを使用してTPUでモデルを駆動する
ガイドのこのセクションでは、TensorFlow1でtf.compat.v1.estimator.tpu.TPUEstimator
を使用してトレーニングと評価を実行する方法を示します。
TPUEstimator
を使用するには、最初にいくつかの関数を定義します。トレーニングデータの入力関数、評価データの評価入力関数、およびトレーニング操作が機能とラベルでどのように定義されるかをTPUEstimator
に指示するモデル関数です。
def _input_fn(params):
dataset = tf1.data.Dataset.from_tensor_slices((features, labels))
dataset = dataset.repeat()
return dataset.batch(params['batch_size'], drop_remainder=True)
def _eval_input_fn(params):
dataset = tf1.data.Dataset.from_tensor_slices((eval_features, eval_labels))
dataset = dataset.repeat()
return dataset.batch(params['batch_size'], drop_remainder=True)
def _model_fn(features, labels, mode, params):
logits = tf1.layers.Dense(1)(features)
loss = tf1.losses.mean_squared_error(labels=labels, predictions=logits)
optimizer = tf1.train.AdagradOptimizer(0.05)
train_op = optimizer.minimize(loss, global_step=tf1.train.get_global_step())
return tf1.estimator.tpu.TPUEstimatorSpec(mode, loss=loss, train_op=train_op)
これらの関数を定義したら、クラスター情報を提供するtf.distribute.cluster_resolver.TPUClusterResolver
とtf.compat.v1.estimator.tpu.RunConfig
オブジェクトを作成します。定義したモデル関数に加えて、 TPUEstimator
を作成できるようになりました。ここでは、チェックポイントの節約をスキップすることでフローを簡素化します。次に、 TPUEstimator
のトレーニングと評価の両方のバッチサイズを指定します。
cluster_resolver = tf1.distribute.cluster_resolver.TPUClusterResolver(tpu='')
print("All devices: ", tf1.config.list_logical_devices('TPU'))
All devices: []
tpu_config = tf1.estimator.tpu.TPUConfig(iterations_per_loop=10)
config = tf1.estimator.tpu.RunConfig(
cluster=cluster_resolver,
save_checkpoints_steps=None,
tpu_config=tpu_config)
estimator = tf1.estimator.tpu.TPUEstimator(
model_fn=_model_fn,
config=config,
train_batch_size=8,
eval_batch_size=8)
WARNING:tensorflow:Estimator's model_fn (<function _model_fn at 0x7fef73ae76a8>) includes params argument, but params are not passed to Estimator. WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmp_bkua7zf INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmp_bkua7zf', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true cluster_def { job { name: "worker" tasks { key: 0 value: "10.240.1.2:8470" } } } isolate_session_state: true , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({'worker': ['10.240.1.2:8470']}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': 'grpc://10.240.1.2:8470', '_evaluation_master': 'grpc://10.240.1.2:8470', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_tpu_config': TPUConfig(iterations_per_loop=10, num_shards=None, num_cores_per_replica=None, per_host_input_for_training=2, tpu_job_name=None, initial_infeed_sleep_secs=None, input_partition_dims=None, eval_training_input_configuration=2, experimental_host_call_every_n_steps=1, experimental_allow_per_host_v2_parallel_get_next=False, experimental_feed_hook=None), '_cluster': <tensorflow.python.distribute.cluster_resolver.tpu.tpu_cluster_resolver.TPUClusterResolver object at 0x7ff288b6aa20>} INFO:tensorflow:_TPUContext: eval_on_tpu True
TPUEstimator.train
を呼び出して、モデルのトレーニングを開始します。
estimator.train(_input_fn, steps=1)
INFO:tensorflow:Querying Tensorflow master (grpc://10.240.1.2:8470) for TPU system metadata. INFO:tensorflow:Found TPU system: INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, -1, 2562214468325910549) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, 7806191887455116208) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, 4935096526614797404) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 17179869184, 6208852770722846295) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 17179869184, -4484747666522931072) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 17179869184, -8715412538518264422) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 17179869184, -3521027846460785533) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 17179869184, -6534172152637582552) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 17179869184, 4735861352635655596) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 17179869184, -411508280321075475) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, 2431932884271560631) WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. INFO:tensorflow:Calling model_fn. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/adagrad.py:77: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor INFO:tensorflow:Bypassing TPUEstimator hook INFO:tensorflow:Done calling model_fn. INFO:tensorflow:TPU job name worker INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:758: Variable.load (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Prefer Variable.assign which has equivalent behavior in 2.X. INFO:tensorflow:Initialized dataset iterators in 0 seconds INFO:tensorflow:Installing graceful shutdown hook. INFO:tensorflow:Creating heartbeat manager for ['/job:worker/replica:0/task:0/device:CPU:0'] INFO:tensorflow:Configuring worker heartbeat: shutdown_mode: WAIT_FOR_COORDINATOR INFO:tensorflow:Init TPU system INFO:tensorflow:Initialized TPU in 7 seconds INFO:tensorflow:Starting infeed thread controller. INFO:tensorflow:Starting outfeed thread controller. INFO:tensorflow:Enqueue next (1) batch(es) of data to infeed. INFO:tensorflow:Dequeue next (1) batch(es) of data from outfeed. INFO:tensorflow:Outfeed finished for iteration (0, 0) INFO:tensorflow:loss = 4.462118, step = 1 INFO:tensorflow:Stop infeed thread controller INFO:tensorflow:Shutting down InfeedController thread. INFO:tensorflow:InfeedController received shutdown signal, stopping. INFO:tensorflow:Infeed thread finished, shutting down. INFO:tensorflow:infeed marked as finished INFO:tensorflow:Stop output thread controller INFO:tensorflow:Shutting down OutfeedController thread. INFO:tensorflow:OutfeedController received shutdown signal, stopping. INFO:tensorflow:Outfeed thread finished, shutting down. INFO:tensorflow:outfeed marked as finished INFO:tensorflow:Shutdown TPU system. INFO:tensorflow:Loss for final step: 4.462118. INFO:tensorflow:training_loop marked as finished <tensorflow_estimator.python.estimator.tpu.tpu_estimator.TPUEstimator at 0x7fec59ef9d68>
次に、 TPUEstimator.evaluate
を呼び出して、評価データを使用してモデルを評価します。
estimator.evaluate(_eval_input_fn, steps=1)
INFO:tensorflow:Could not find trained model in model_dir: /tmp/tmp_bkua7zf, running initialization to evaluate. INFO:tensorflow:Calling model_fn. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:3406: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Deprecated in favor of operator or tf.math.divide. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-02-05T13:15:25 INFO:tensorflow:TPU job name worker INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Init TPU system INFO:tensorflow:Initialized TPU in 10 seconds INFO:tensorflow:Starting infeed thread controller. INFO:tensorflow:Starting outfeed thread controller. INFO:tensorflow:Initialized dataset iterators in 0 seconds INFO:tensorflow:Enqueue next (1) batch(es) of data to infeed. INFO:tensorflow:Dequeue next (1) batch(es) of data from outfeed. INFO:tensorflow:Outfeed finished for iteration (0, 0) INFO:tensorflow:Evaluation [1/1] INFO:tensorflow:Stop infeed thread controller INFO:tensorflow:Shutting down InfeedController thread. INFO:tensorflow:InfeedController received shutdown signal, stopping. INFO:tensorflow:Infeed thread finished, shutting down. INFO:tensorflow:infeed marked as finished INFO:tensorflow:Stop output thread controller INFO:tensorflow:Shutting down OutfeedController thread. INFO:tensorflow:OutfeedController received shutdown signal, stopping. INFO:tensorflow:Outfeed thread finished, shutting down. INFO:tensorflow:outfeed marked as finished INFO:tensorflow:Shutdown TPU system. INFO:tensorflow:Inference Time : 10.80091s INFO:tensorflow:Finished evaluation at 2022-02-05-13:15:36 INFO:tensorflow:Saving dict for global step 1: global_step = 1, loss = 116.58184 INFO:tensorflow:evaluation_loop marked as finished {'loss': 116.58184, 'global_step': 1}
TensorFlow 2:KerasModel.fitとTPUStrategyを使用してTPUでモデルを駆動する
TensorFlow 2で、TPUワーカーをトレーニングするには、tf.distribute.TPUStrategyをtf.distribute.TPUStrategy
APIと一緒に使用して、モデルの定義とトレーニング/評価を行います。 (Keras Model.fit
およびカスタムトレーニングループ( tf.function
およびtf.GradientTape
を使用)を使用したトレーニングのその他の例については、 「TPUの使用」ガイドを参照してください。)
リモートクラスターに接続してTPUワーカーを初期化するには、初期化作業を実行する必要があるため、クラスター情報を提供してクラスターに接続するTPUClusterResolver
を作成することから始めます。 (詳細については、 「TPUの使用」ガイドの「 TPU初期化」セクションを参照してください。)
cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='')
tf.config.experimental_connect_to_cluster(cluster_resolver)
tf.tpu.experimental.initialize_tpu_system(cluster_resolver)
print("All devices: ", tf.config.list_logical_devices('TPU'))
INFO:tensorflow:Clearing out eager caches INFO:tensorflow:Clearing out eager caches INFO:tensorflow:Initializing the TPU system: grpc://10.240.1.2:8470 INFO:tensorflow:Initializing the TPU system: grpc://10.240.1.2:8470 INFO:tensorflow:Finished initializing TPU system. INFO:tensorflow:Finished initializing TPU system. All devices: [LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:0', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:1', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:2', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:3', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:4', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:5', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:6', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:7', device_type='TPU')]
次に、データが準備されたら、 TPUStrategy
を作成し、この戦略の範囲内でモデル、メトリック、およびオプティマイザーを定義します。
TPUStrategy
で同等のトレーニング速度を達成するには、 steps_per_execution
でModel.compile
の数値を選択する必要があります。これは、各tf.function
呼び出し中に実行するバッチの数を指定し、パフォーマンスにとって重要であるためです。この引数は、 TPUEstimator
で使用されるiterations_per_loop
に似ています。カスタムトレーニングループを使用している場合は、 tf.function
トレーニング関数内で複数のステップが実行されていることを確認する必要があります。詳細については、 「TPUの使用」ガイドの「 tf.function」セクション内の「複数のステップによるパフォーマンスの向上」を参照してください。
tf.distribute.TPUStrategy
は、制限された動的形状をサポートできます。これは、動的形状計算の上限を推測できる場合です。ただし、動的な形状は、静的な形状と比較して、パフォーマンスのオーバーヘッドをもたらす可能性があります。したがって、特にトレーニングでは、可能であれば入力形状を静的にすることをお勧めします。動的形状を返す一般的な操作の1つは、 tf.data.Dataset.batch(batch_size)
です。これは、ストリームに残っているサンプルの数がバッチサイズより少ない場合があるためです。したがって、TPUでトレーニングするときは、最高のトレーニングパフォーマンスを得るためtf.data.Dataset.batch(..., drop_remainder=True)
を使用する必要があります。
dataset = tf.data.Dataset.from_tensor_slices(
(features, labels)).shuffle(10).repeat().batch(
8, drop_remainder=True).prefetch(2)
eval_dataset = tf.data.Dataset.from_tensor_slices(
(eval_features, eval_labels)).batch(1, drop_remainder=True)
strategy = tf.distribute.TPUStrategy(cluster_resolver)
with strategy.scope():
model = tf.keras.models.Sequential([tf.keras.layers.Dense(1)])
optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05)
model.compile(optimizer, "mse", steps_per_execution=10)
INFO:tensorflow:Found TPU system: INFO:tensorflow:Found TPU system: INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)プレースホルダー16
これで、トレーニングデータセットを使用してモデルをトレーニングする準備が整いました。
model.fit(dataset, epochs=5, steps_per_epoch=10)
Epoch 1/5 10/10 [==============================] - 2s 151ms/step - loss: 0.0840 Epoch 2/5 10/10 [==============================] - 0s 3ms/step - loss: 9.6915e-04 Epoch 3/5 10/10 [==============================] - 0s 3ms/step - loss: 1.5100e-05 Epoch 4/5 10/10 [==============================] - 0s 3ms/step - loss: 2.3593e-07 Epoch 5/5 10/10 [==============================] - 0s 3ms/step - loss: 3.7059e-09 <keras.callbacks.History at 0x7fec58275438>プレースホルダー18
最後に、評価データセットを使用してモデルを評価します。
model.evaluate(eval_dataset, return_dict=True)
1/1 [==============================] - 2s 2s/step - loss: 0.6127 {'loss': 0.6127181053161621}
次のステップ
TensorFlow 2のTPUStrategy
の詳細については、次のリソースを検討してください。
- ガイド: TPUを使用する(Keras
Model.fit
を使用したトレーニング/ tf.distribute.TPUStrategyを使用したカスタムトレーニングループ、tf.distribute.TPUStrategy
をtf.function
したパフォーマンス向上のヒント) - ガイド: TensorFlowを使用した分散トレーニング
トレーニングのカスタマイズの詳細については、以下を参照してください。
TPU(機械学習用のGoogle専用ASIC)は、 Google Colab 、 TPU Research Cloud 、およびCloudTPUから入手できます。