TPUEstimatorからTPUStrategyに移行します

TensorFlow.orgで表示GoogleColabで実行GitHubでソースを表示 ノートブックをダウンロード

このガイドでは、 TPUで実行されているワークフローをTensorFlow1のTPUEstimator TPUStrategy移行する方法を示します。

  • TensorFlow 1では、 tf.compat.v1.estimator.tpu.TPUEstimator APIを使用して、モデルをトレーニングおよび評価したり、推論を実行してモデルを(クラウド)TPUに保存したりできます。
  • TensorFlow 2では、TPUとTPUポッド(専用の高速ネットワークインターフェイスで接続されたTPUデバイスのコレクション)で同期トレーニングを実行するには、TPU配布戦略tf.distribute.TPUStrategy )を使用する必要があります。この戦略は、モデル構築( tf.keras.Model )、オプティマイザー( tf.keras.optimizers.Optimizer )、トレーニング( Model.fit )などのKeras APIと、カスタムトレーニングループ( tf.functionを使用)で機能します。 tf.functionおよびtf.GradientTape )。

エンドツーエンドのTensorFlow2の例については、「TPUの使用」ガイド(つまり、「TPUでの分類」セクション)と、「 TPUでBERTを使用してGLUEを解決する」チュートリアルを確認してください。また、 TPUStrategyを含むすべてのTensorFlow配布戦略をカバーする分散トレーニングガイドが役立つ場合があります。

設定

インポートとデモンストレーション用の簡単なデータセットから始めます。

import tensorflow as tf
import tensorflow.compat.v1 as tf1
/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/requests/__init__.py:104: RequestsDependencyWarning: urllib3 (1.26.8) or chardet (2.3.0)/charset_normalizer (2.0.11) doesn't match a supported version!
  RequestsDependencyWarning)
features = [[1., 1.5]]
labels = [[0.3]]
eval_features = [[4., 4.5]]
eval_labels = [[0.8]]

TensorFlow 1:TPUEstimatorを使用してTPUでモデルを駆動する

ガイドのこのセクションでは、TensorFlow1でtf.compat.v1.estimator.tpu.TPUEstimatorを使用してトレーニングと評価を実行する方法を示します。

TPUEstimatorを使用するには、最初にいくつかの関数を定義します。トレーニングデータの入力関数、評価データの評価入力関数、およびトレーニング操作が機能とラベルでどのように定義されるかをTPUEstimatorに指示するモデル関数です。

def _input_fn(params):
  dataset = tf1.data.Dataset.from_tensor_slices((features, labels))
  dataset = dataset.repeat()
  return dataset.batch(params['batch_size'], drop_remainder=True)

def _eval_input_fn(params):
  dataset = tf1.data.Dataset.from_tensor_slices((eval_features, eval_labels))
  dataset = dataset.repeat()
  return dataset.batch(params['batch_size'], drop_remainder=True)

def _model_fn(features, labels, mode, params):
  logits = tf1.layers.Dense(1)(features)
  loss = tf1.losses.mean_squared_error(labels=labels, predictions=logits)
  optimizer = tf1.train.AdagradOptimizer(0.05)
  train_op = optimizer.minimize(loss, global_step=tf1.train.get_global_step())
  return tf1.estimator.tpu.TPUEstimatorSpec(mode, loss=loss, train_op=train_op)

これらの関数を定義したら、クラスター情報を提供するtf.distribute.cluster_resolver.TPUClusterResolvertf.compat.v1.estimator.tpu.RunConfigオブジェクトを作成します。定義したモデル関数に加えて、 TPUEstimatorを作成できるようになりました。ここでは、チェックポイントの節約をスキップすることでフローを簡素化します。次に、 TPUEstimatorのトレーニングと評価の両方のバッチサイズを指定します。

cluster_resolver = tf1.distribute.cluster_resolver.TPUClusterResolver(tpu='')
print("All devices: ", tf1.config.list_logical_devices('TPU'))
All devices:  []
tpu_config = tf1.estimator.tpu.TPUConfig(iterations_per_loop=10)
config = tf1.estimator.tpu.RunConfig(
    cluster=cluster_resolver,
    save_checkpoints_steps=None,
    tpu_config=tpu_config)
estimator = tf1.estimator.tpu.TPUEstimator(
    model_fn=_model_fn,
    config=config,
    train_batch_size=8,
    eval_batch_size=8)
WARNING:tensorflow:Estimator's model_fn (<function _model_fn at 0x7fef73ae76a8>) includes params argument, but params are not passed to Estimator.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmp_bkua7zf
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmp_bkua7zf', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true
cluster_def {
  job {
    name: "worker"
    tasks {
      key: 0
      value: "10.240.1.2:8470"
    }
  }
}
isolate_session_state: true
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({'worker': ['10.240.1.2:8470']}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': 'grpc://10.240.1.2:8470', '_evaluation_master': 'grpc://10.240.1.2:8470', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_tpu_config': TPUConfig(iterations_per_loop=10, num_shards=None, num_cores_per_replica=None, per_host_input_for_training=2, tpu_job_name=None, initial_infeed_sleep_secs=None, input_partition_dims=None, eval_training_input_configuration=2, experimental_host_call_every_n_steps=1, experimental_allow_per_host_v2_parallel_get_next=False, experimental_feed_hook=None), '_cluster': <tensorflow.python.distribute.cluster_resolver.tpu.tpu_cluster_resolver.TPUClusterResolver object at 0x7ff288b6aa20>}
INFO:tensorflow:_TPUContext: eval_on_tpu True

TPUEstimator.trainを呼び出して、モデルのトレーニングを開始します。

estimator.train(_input_fn, steps=1)
INFO:tensorflow:Querying Tensorflow master (grpc://10.240.1.2:8470) for TPU system metadata.
INFO:tensorflow:Found TPU system:
INFO:tensorflow:*** Num TPU Cores: 8
INFO:tensorflow:*** Num TPU Workers: 1
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, -1, 2562214468325910549)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, 7806191887455116208)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, 4935096526614797404)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 17179869184, 6208852770722846295)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 17179869184, -4484747666522931072)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 17179869184, -8715412538518264422)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 17179869184, -3521027846460785533)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 17179869184, -6534172152637582552)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 17179869184, 4735861352635655596)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 17179869184, -411508280321075475)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, 2431932884271560631)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
INFO:tensorflow:Calling model_fn.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/adagrad.py:77: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
INFO:tensorflow:Bypassing TPUEstimator hook
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:TPU job name worker
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:758: Variable.load (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Prefer Variable.assign which has equivalent behavior in 2.X.
INFO:tensorflow:Initialized dataset iterators in 0 seconds
INFO:tensorflow:Installing graceful shutdown hook.
INFO:tensorflow:Creating heartbeat manager for ['/job:worker/replica:0/task:0/device:CPU:0']
INFO:tensorflow:Configuring worker heartbeat: shutdown_mode: WAIT_FOR_COORDINATOR

INFO:tensorflow:Init TPU system
INFO:tensorflow:Initialized TPU in 7 seconds
INFO:tensorflow:Starting infeed thread controller.
INFO:tensorflow:Starting outfeed thread controller.
INFO:tensorflow:Enqueue next (1) batch(es) of data to infeed.
INFO:tensorflow:Dequeue next (1) batch(es) of data from outfeed.
INFO:tensorflow:Outfeed finished for iteration (0, 0)
INFO:tensorflow:loss = 4.462118, step = 1
INFO:tensorflow:Stop infeed thread controller
INFO:tensorflow:Shutting down InfeedController thread.
INFO:tensorflow:InfeedController received shutdown signal, stopping.
INFO:tensorflow:Infeed thread finished, shutting down.
INFO:tensorflow:infeed marked as finished
INFO:tensorflow:Stop output thread controller
INFO:tensorflow:Shutting down OutfeedController thread.
INFO:tensorflow:OutfeedController received shutdown signal, stopping.
INFO:tensorflow:Outfeed thread finished, shutting down.
INFO:tensorflow:outfeed marked as finished
INFO:tensorflow:Shutdown TPU system.
INFO:tensorflow:Loss for final step: 4.462118.
INFO:tensorflow:training_loop marked as finished
<tensorflow_estimator.python.estimator.tpu.tpu_estimator.TPUEstimator at 0x7fec59ef9d68>

次に、 TPUEstimator.evaluateを呼び出して、評価データを使用してモデルを評価します。

estimator.evaluate(_eval_input_fn, steps=1)
INFO:tensorflow:Could not find trained model in model_dir: /tmp/tmp_bkua7zf, running initialization to evaluate.
INFO:tensorflow:Calling model_fn.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:3406: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Deprecated in favor of operator or tf.math.divide.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-02-05T13:15:25
INFO:tensorflow:TPU job name worker
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Init TPU system
INFO:tensorflow:Initialized TPU in 10 seconds
INFO:tensorflow:Starting infeed thread controller.
INFO:tensorflow:Starting outfeed thread controller.
INFO:tensorflow:Initialized dataset iterators in 0 seconds
INFO:tensorflow:Enqueue next (1) batch(es) of data to infeed.
INFO:tensorflow:Dequeue next (1) batch(es) of data from outfeed.
INFO:tensorflow:Outfeed finished for iteration (0, 0)
INFO:tensorflow:Evaluation [1/1]
INFO:tensorflow:Stop infeed thread controller
INFO:tensorflow:Shutting down InfeedController thread.
INFO:tensorflow:InfeedController received shutdown signal, stopping.
INFO:tensorflow:Infeed thread finished, shutting down.
INFO:tensorflow:infeed marked as finished
INFO:tensorflow:Stop output thread controller
INFO:tensorflow:Shutting down OutfeedController thread.
INFO:tensorflow:OutfeedController received shutdown signal, stopping.
INFO:tensorflow:Outfeed thread finished, shutting down.
INFO:tensorflow:outfeed marked as finished
INFO:tensorflow:Shutdown TPU system.
INFO:tensorflow:Inference Time : 10.80091s
INFO:tensorflow:Finished evaluation at 2022-02-05-13:15:36
INFO:tensorflow:Saving dict for global step 1: global_step = 1, loss = 116.58184
INFO:tensorflow:evaluation_loop marked as finished
{'loss': 116.58184, 'global_step': 1}

TensorFlow 2:KerasModel.fitとTPUStrategyを使用してTPUでモデルを駆動する

TensorFlow 2で、TPUワーカーをトレーニングするには、tf.distribute.TPUStrategyをtf.distribute.TPUStrategy APIと一緒に使用して、モデルの定義とトレーニング/評価を行います。 (Keras Model.fitおよびカスタムトレーニングループ( tf.functionおよびtf.GradientTapeを使用)を使用したトレーニングのその他の例については、 「TPUの使用」ガイドを参照してください。)

リモートクラスターに接続してTPUワーカーを初期化するには、初期化作業を実行する必要があるため、クラスター情報を提供してクラスターに接続するTPUClusterResolverを作成することから始めます。 (詳細については、 「TPUの使用」ガイドの「 TPU初期化」セクションを参照してください。)

cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='')
tf.config.experimental_connect_to_cluster(cluster_resolver)
tf.tpu.experimental.initialize_tpu_system(cluster_resolver)
print("All devices: ", tf.config.list_logical_devices('TPU'))
INFO:tensorflow:Clearing out eager caches
INFO:tensorflow:Clearing out eager caches
INFO:tensorflow:Initializing the TPU system: grpc://10.240.1.2:8470
INFO:tensorflow:Initializing the TPU system: grpc://10.240.1.2:8470
INFO:tensorflow:Finished initializing TPU system.
INFO:tensorflow:Finished initializing TPU system.
All devices:  [LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:0', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:1', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:2', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:3', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:4', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:5', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:6', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:7', device_type='TPU')]

次に、データが準備されたら、 TPUStrategyを作成し、この戦略の範囲内でモデル、メトリック、およびオプティマイザーを定義します。

TPUStrategyで同等のトレーニング速度を達成するには、 steps_per_executionModel.compileの数値を選択する必要があります。これは、各tf.function呼び出し中に実行するバッチの数を指定し、パフォーマンスにとって重要であるためです。この引数は、 TPUEstimatorで使用されるiterations_per_loopに似ています。カスタムトレーニングループを使用している場合は、 tf.functionトレーニング関数内で複数のステップが実行されていることを確認する必要があります。詳細については、 「TPUの使用」ガイドの「 tf.function」セクション内の「複数のステップによるパフォーマンスの向上」を参照してください。

tf.distribute.TPUStrategyは、制限された動的形状をサポートできます。これは、動的形状計算の上限を推測できる場合です。ただし、動的な形状は、静的な形状と比較して、パフォーマンスのオーバーヘッドをもたらす可能性があります。したがって、特にトレーニングでは、可能であれば入力形状を静的にすることをお勧めします。動的形状を返す一般的な操作の1つは、 tf.data.Dataset.batch(batch_size)です。これは、ストリームに残っているサンプルの数がバッチサイズより少ない場合があるためです。したがって、TPUでトレーニングするときは、最高のトレーニングパフォーマンスを得るためtf.data.Dataset.batch(..., drop_remainder=True)を使用する必要があります。

dataset = tf.data.Dataset.from_tensor_slices(
    (features, labels)).shuffle(10).repeat().batch(
        8, drop_remainder=True).prefetch(2)
eval_dataset = tf.data.Dataset.from_tensor_slices(
    (eval_features, eval_labels)).batch(1, drop_remainder=True)

strategy = tf.distribute.TPUStrategy(cluster_resolver)
with strategy.scope():
  model = tf.keras.models.Sequential([tf.keras.layers.Dense(1)])
  optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05)
  model.compile(optimizer, "mse", steps_per_execution=10)
INFO:tensorflow:Found TPU system:
INFO:tensorflow:Found TPU system:
INFO:tensorflow:*** Num TPU Cores: 8
INFO:tensorflow:*** Num TPU Cores: 8
INFO:tensorflow:*** Num TPU Workers: 1
INFO:tensorflow:*** Num TPU Workers: 1
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
プレースホルダー16

これで、トレーニングデータセットを使用してモデルをトレーニングする準備が整いました。

model.fit(dataset, epochs=5, steps_per_epoch=10)
Epoch 1/5
10/10 [==============================] - 2s 151ms/step - loss: 0.0840
Epoch 2/5
10/10 [==============================] - 0s 3ms/step - loss: 9.6915e-04
Epoch 3/5
10/10 [==============================] - 0s 3ms/step - loss: 1.5100e-05
Epoch 4/5
10/10 [==============================] - 0s 3ms/step - loss: 2.3593e-07
Epoch 5/5
10/10 [==============================] - 0s 3ms/step - loss: 3.7059e-09
<keras.callbacks.History at 0x7fec58275438>
プレースホルダー18

最後に、評価データセットを使用してモデルを評価します。

model.evaluate(eval_dataset, return_dict=True)
1/1 [==============================] - 2s 2s/step - loss: 0.6127
{'loss': 0.6127181053161621}

次のステップ

TensorFlow 2のTPUStrategyの詳細については、次のリソースを検討してください。

トレーニングのカスタマイズの詳細については、以下を参照してください。

TPU(機械学習用のGoogle専用ASIC)は、 Google ColabTPU Research Cloud 、およびCloudTPUから入手できます。