Zobacz na TensorFlow.org | Uruchom w Google Colab | Wyświetl źródło na GitHub | Pobierz notatnik |
Ten przewodnik pokazuje, jak przeprowadzić migrację przepływów pracy działających na TPU z interfejsu API TPUEstimator TensorFlow 1 do interfejsu API TPUEstimator
TPUStrategy
2.
- W TensorFlow 1 interfejs API
tf.compat.v1.estimator.tpu.TPUEstimator
pozwala trenować i oceniać model, a także przeprowadzać wnioskowanie i zapisywać model (w celu udostępniania) na TPU (w chmurze). - W TensorFlow 2, aby przeprowadzić szkolenie synchroniczne na jednostkach TPU i podach TPU (zbiór urządzeń TPU połączonych dedykowanymi, szybkimi interfejsami sieciowymi), musisz użyć strategii dystrybucji TPU —
tf.distribute.TPUStrategy
. Strategia może współpracować z interfejsami API Keras — w tym z tworzeniem modeli (tf.keras.Model
), optymalizatorami (tf.keras.optimizers.Optimizer
) i uczeniem (Model.fit
) — a także z niestandardową pętlą szkoleniową (ztf.function
itf.GradientTape
).
Aby zapoznać się z kompleksowymi przykładami TensorFlow 2, zapoznaj się z przewodnikiem Use TPUs — mianowicie sekcją Classification on TPUs — i samouczkiem Solve GLUE using BERT on TPU . Przydatny może być również przewodnik dotyczący szkoleń rozproszonych , który obejmuje wszystkie strategie dystrybucji TensorFlow, w tym TPUStrategy
.
Ustawiać
Zacznij od importów i prostego zestawu danych do celów demonstracyjnych:
import tensorflow as tf
import tensorflow.compat.v1 as tf1
/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/requests/__init__.py:104: RequestsDependencyWarning: urllib3 (1.26.8) or chardet (2.3.0)/charset_normalizer (2.0.11) doesn't match a supported version! RequestsDependencyWarning)
features = [[1., 1.5]]
labels = [[0.3]]
eval_features = [[4., 4.5]]
eval_labels = [[0.8]]
TensorFlow 1: Napęd modelu na TPU za pomocą TPUEstimator
Ta sekcja przewodnika pokazuje, jak przeprowadzić szkolenie i ocenę za pomocą tf.compat.v1.estimator.tpu.TPUEstimator
w TensorFlow 1.
Aby użyć TPUEstimator
, najpierw zdefiniuj kilka funkcji: funkcję wejściową dla danych uczących, funkcję wejściową oceny dla danych ewaluacyjnych oraz funkcję modelu, która mówi TPUEstimator
, w jaki sposób operacja ucząca jest zdefiniowana za pomocą cech i etykiet:
def _input_fn(params):
dataset = tf1.data.Dataset.from_tensor_slices((features, labels))
dataset = dataset.repeat()
return dataset.batch(params['batch_size'], drop_remainder=True)
def _eval_input_fn(params):
dataset = tf1.data.Dataset.from_tensor_slices((eval_features, eval_labels))
dataset = dataset.repeat()
return dataset.batch(params['batch_size'], drop_remainder=True)
def _model_fn(features, labels, mode, params):
logits = tf1.layers.Dense(1)(features)
loss = tf1.losses.mean_squared_error(labels=labels, predictions=logits)
optimizer = tf1.train.AdagradOptimizer(0.05)
train_op = optimizer.minimize(loss, global_step=tf1.train.get_global_step())
return tf1.estimator.tpu.TPUEstimatorSpec(mode, loss=loss, train_op=train_op)
Po zdefiniowaniu tych funkcji utwórz obiekt tf.distribute.cluster_resolver.TPUClusterResolver
, który udostępnia informacje o klastrze, oraz obiekt tf.compat.v1.estimator.tpu.RunConfig
. Wraz ze zdefiniowaną funkcją modelu możesz teraz utworzyć TPUEstimator
. Tutaj uprościsz przepływ, pomijając oszczędności w punktach kontrolnych. Następnie określisz rozmiar partii zarówno dla uczenia, jak i oceny dla TPUEstimator
.
cluster_resolver = tf1.distribute.cluster_resolver.TPUClusterResolver(tpu='')
print("All devices: ", tf1.config.list_logical_devices('TPU'))
All devices: []
tpu_config = tf1.estimator.tpu.TPUConfig(iterations_per_loop=10)
config = tf1.estimator.tpu.RunConfig(
cluster=cluster_resolver,
save_checkpoints_steps=None,
tpu_config=tpu_config)
estimator = tf1.estimator.tpu.TPUEstimator(
model_fn=_model_fn,
config=config,
train_batch_size=8,
eval_batch_size=8)
WARNING:tensorflow:Estimator's model_fn (<function _model_fn at 0x7fef73ae76a8>) includes params argument, but params are not passed to Estimator. WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmp_bkua7zf INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmp_bkua7zf', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true cluster_def { job { name: "worker" tasks { key: 0 value: "10.240.1.2:8470" } } } isolate_session_state: true , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({'worker': ['10.240.1.2:8470']}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': 'grpc://10.240.1.2:8470', '_evaluation_master': 'grpc://10.240.1.2:8470', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_tpu_config': TPUConfig(iterations_per_loop=10, num_shards=None, num_cores_per_replica=None, per_host_input_for_training=2, tpu_job_name=None, initial_infeed_sleep_secs=None, input_partition_dims=None, eval_training_input_configuration=2, experimental_host_call_every_n_steps=1, experimental_allow_per_host_v2_parallel_get_next=False, experimental_feed_hook=None), '_cluster': <tensorflow.python.distribute.cluster_resolver.tpu.tpu_cluster_resolver.TPUClusterResolver object at 0x7ff288b6aa20>} INFO:tensorflow:_TPUContext: eval_on_tpu True
Zadzwoń do TPUEstimator.train
, aby rozpocząć trenowanie modelu:
estimator.train(_input_fn, steps=1)
INFO:tensorflow:Querying Tensorflow master (grpc://10.240.1.2:8470) for TPU system metadata. INFO:tensorflow:Found TPU system: INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, -1, 2562214468325910549) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, 7806191887455116208) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, 4935096526614797404) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 17179869184, 6208852770722846295) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 17179869184, -4484747666522931072) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 17179869184, -8715412538518264422) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 17179869184, -3521027846460785533) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 17179869184, -6534172152637582552) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 17179869184, 4735861352635655596) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 17179869184, -411508280321075475) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, 2431932884271560631) WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. INFO:tensorflow:Calling model_fn. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/adagrad.py:77: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor INFO:tensorflow:Bypassing TPUEstimator hook INFO:tensorflow:Done calling model_fn. INFO:tensorflow:TPU job name worker INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:758: Variable.load (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Prefer Variable.assign which has equivalent behavior in 2.X. INFO:tensorflow:Initialized dataset iterators in 0 seconds INFO:tensorflow:Installing graceful shutdown hook. INFO:tensorflow:Creating heartbeat manager for ['/job:worker/replica:0/task:0/device:CPU:0'] INFO:tensorflow:Configuring worker heartbeat: shutdown_mode: WAIT_FOR_COORDINATOR INFO:tensorflow:Init TPU system INFO:tensorflow:Initialized TPU in 7 seconds INFO:tensorflow:Starting infeed thread controller. INFO:tensorflow:Starting outfeed thread controller. INFO:tensorflow:Enqueue next (1) batch(es) of data to infeed. INFO:tensorflow:Dequeue next (1) batch(es) of data from outfeed. INFO:tensorflow:Outfeed finished for iteration (0, 0) INFO:tensorflow:loss = 4.462118, step = 1 INFO:tensorflow:Stop infeed thread controller INFO:tensorflow:Shutting down InfeedController thread. INFO:tensorflow:InfeedController received shutdown signal, stopping. INFO:tensorflow:Infeed thread finished, shutting down. INFO:tensorflow:infeed marked as finished INFO:tensorflow:Stop output thread controller INFO:tensorflow:Shutting down OutfeedController thread. INFO:tensorflow:OutfeedController received shutdown signal, stopping. INFO:tensorflow:Outfeed thread finished, shutting down. INFO:tensorflow:outfeed marked as finished INFO:tensorflow:Shutdown TPU system. INFO:tensorflow:Loss for final step: 4.462118. INFO:tensorflow:training_loop marked as finished <tensorflow_estimator.python.estimator.tpu.tpu_estimator.TPUEstimator at 0x7fec59ef9d68>
Następnie wywołaj TPUEstimator.evaluate
, aby ocenić model przy użyciu danych oceny:
estimator.evaluate(_eval_input_fn, steps=1)
INFO:tensorflow:Could not find trained model in model_dir: /tmp/tmp_bkua7zf, running initialization to evaluate. INFO:tensorflow:Calling model_fn. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:3406: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Deprecated in favor of operator or tf.math.divide. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-02-05T13:15:25 INFO:tensorflow:TPU job name worker INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Init TPU system INFO:tensorflow:Initialized TPU in 10 seconds INFO:tensorflow:Starting infeed thread controller. INFO:tensorflow:Starting outfeed thread controller. INFO:tensorflow:Initialized dataset iterators in 0 seconds INFO:tensorflow:Enqueue next (1) batch(es) of data to infeed. INFO:tensorflow:Dequeue next (1) batch(es) of data from outfeed. INFO:tensorflow:Outfeed finished for iteration (0, 0) INFO:tensorflow:Evaluation [1/1] INFO:tensorflow:Stop infeed thread controller INFO:tensorflow:Shutting down InfeedController thread. INFO:tensorflow:InfeedController received shutdown signal, stopping. INFO:tensorflow:Infeed thread finished, shutting down. INFO:tensorflow:infeed marked as finished INFO:tensorflow:Stop output thread controller INFO:tensorflow:Shutting down OutfeedController thread. INFO:tensorflow:OutfeedController received shutdown signal, stopping. INFO:tensorflow:Outfeed thread finished, shutting down. INFO:tensorflow:outfeed marked as finished INFO:tensorflow:Shutdown TPU system. INFO:tensorflow:Inference Time : 10.80091s INFO:tensorflow:Finished evaluation at 2022-02-05-13:15:36 INFO:tensorflow:Saving dict for global step 1: global_step = 1, loss = 116.58184 INFO:tensorflow:evaluation_loop marked as finished {'loss': 116.58184, 'global_step': 1}
TensorFlow 2: Prowadź model na TPU za pomocą Keras Model.fit i TPUStrategy
W TensorFlow 2, aby szkolić pracowników TPU, użyj tf.distribute.TPUStrategy
wraz z interfejsami API Keras do definicji modelu i szkolenia/oceny. (Więcej przykładów treningu z Keras Model.fit
i niestandardową pętlą treningową (z tf.function
i tf.GradientTape
) można znaleźć w przewodniku Używanie TPUs).
Ponieważ musisz wykonać pewne prace inicjujące, aby połączyć się ze zdalnym klastrem i zainicjować procesy robocze TPU, zacznij od utworzenia TPUClusterResolver
, aby dostarczyć informacje o klastrze i połączyć się z klastrem. (Dowiedz się więcej w sekcji Inicjowanie TPU w przewodniku Korzystanie z TPU ).
cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='')
tf.config.experimental_connect_to_cluster(cluster_resolver)
tf.tpu.experimental.initialize_tpu_system(cluster_resolver)
print("All devices: ", tf.config.list_logical_devices('TPU'))
INFO:tensorflow:Clearing out eager caches INFO:tensorflow:Clearing out eager caches INFO:tensorflow:Initializing the TPU system: grpc://10.240.1.2:8470 INFO:tensorflow:Initializing the TPU system: grpc://10.240.1.2:8470 INFO:tensorflow:Finished initializing TPU system. INFO:tensorflow:Finished initializing TPU system. All devices: [LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:0', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:1', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:2', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:3', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:4', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:5', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:6', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:7', device_type='TPU')]
Następnie, po przygotowaniu danych, utworzysz TPUStrategy
, zdefiniujesz model, metryki i optymalizator w ramach tej strategii.
Aby osiągnąć porównywalną szybkość uczenia z TPUStrategy
, należy wybrać liczbę dla steps_per_execution
w Model.compile
, ponieważ określa ona liczbę partii do uruchomienia podczas każdego wywołania tf.function
i ma kluczowe znaczenie dla wydajności. Ten argument jest podobny do iterations_per_loop
używanego w TPUEstimator
. Jeśli używasz niestandardowych pętli treningowych, upewnij się, że w ramach funkcji treningowej tf.function
wykonywanych jest wiele kroków. Aby uzyskać więcej informacji, przejdź do sekcji Poprawa wydajności za pomocą wielu kroków wewnątrz tf.function w przewodniku Korzystanie z jednostek TPU.
tf.distribute.TPUStrategy
może obsługiwać ograniczone kształty dynamiczne, co oznacza, że można wywnioskować górną granicę obliczenia kształtu dynamicznego. Jednak kształty dynamiczne mogą powodować pewne narzuty na wydajność w porównaniu z kształtami statycznymi. Dlatego ogólnie zaleca się, aby kształty wejściowe były statyczne, jeśli to możliwe, zwłaszcza podczas treningu. Jedną z typowych operacji, która zwraca dynamiczny kształt, jest tf.data.Dataset.batch(batch_size)
, ponieważ liczba próbek pozostałych w strumieniu może być mniejsza niż rozmiar partii. Dlatego podczas trenowania na TPU należy używać tf.data.Dataset.batch(..., drop_remainder=True)
aby uzyskać najlepszą wydajność treningu.
dataset = tf.data.Dataset.from_tensor_slices(
(features, labels)).shuffle(10).repeat().batch(
8, drop_remainder=True).prefetch(2)
eval_dataset = tf.data.Dataset.from_tensor_slices(
(eval_features, eval_labels)).batch(1, drop_remainder=True)
strategy = tf.distribute.TPUStrategy(cluster_resolver)
with strategy.scope():
model = tf.keras.models.Sequential([tf.keras.layers.Dense(1)])
optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05)
model.compile(optimizer, "mse", steps_per_execution=10)
INFO:tensorflow:Found TPU system: INFO:tensorflow:Found TPU system: INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
Dzięki temu jesteś gotowy do trenowania modelu za pomocą zestawu danych treningowych:
model.fit(dataset, epochs=5, steps_per_epoch=10)
Epoch 1/5 10/10 [==============================] - 2s 151ms/step - loss: 0.0840 Epoch 2/5 10/10 [==============================] - 0s 3ms/step - loss: 9.6915e-04 Epoch 3/5 10/10 [==============================] - 0s 3ms/step - loss: 1.5100e-05 Epoch 4/5 10/10 [==============================] - 0s 3ms/step - loss: 2.3593e-07 Epoch 5/5 10/10 [==============================] - 0s 3ms/step - loss: 3.7059e-09 <keras.callbacks.History at 0x7fec58275438>
Na koniec oceń model przy użyciu zestawu danych ewaluacyjnych:
model.evaluate(eval_dataset, return_dict=True)
1/1 [==============================] - 2s 2s/step - loss: 0.6127 {'loss': 0.6127181053161621}
Następne kroki
Aby dowiedzieć się więcej o TPUStrategy
w TensorFlow 2, rozważ następujące zasoby:
- Przewodnik: Użyj TPU (obejmuje trening z Keras
Model.fit
/ niestandardową pętlę treningową ztf.distribute.TPUStrategy
, a także wskazówki dotyczące poprawy wydajności za pomocątf.function
) - Przewodnik: Szkolenie rozproszone z TensorFlow
Aby dowiedzieć się więcej o dostosowywaniu treningu, zapoznaj się z:
- Przewodnik: Dostosuj to, co dzieje się w Model.fit
- Przewodnik: Pisanie pętli treningowej od podstaw
TPU — wyspecjalizowane układy ASIC firmy Google do uczenia maszynowego — są dostępne w Google Colab , TPU Research Cloud i Cloud TPU .