TPU embedding_columns'dan TPUEmbedding katmanına geçiş yapın

TensorFlow.org'da görüntüleyin Google Colab'da çalıştırın Kaynağı GitHub'da görüntüleyin Not defterini indir

Bu kılavuz, TPU'lardaki gömme eğitiminin TPUEstimator ile TensorFlow 1'in embedding_column API'sinden TPUEstimator ile TPUStrategy 2'nin TPUEmbedding katman API'sine nasıl taşınacağını gösterir.

Gömmeler (büyük) matrislerdir. Seyrek bir özellik uzayından yoğun vektörlere eşlenen arama tablolarıdır. Gömmeler, özellikler arasındaki karmaşık benzerlikleri ve ilişkileri yakalayarak verimli ve yoğun temsiller sağlar.

TensorFlow, TPU'larda eğitim yerleştirmeleri için özel destek içerir. Bu TPU'ya özgü gömme desteği, tek bir TPU cihazının belleğinden daha büyük olan gömmeleri eğitmenize ve TPU'larda seyrek ve düzensiz girişler kullanmanıza olanak tanır.

Ek bilgi için tfrs.layers.embedding.TPUEmbedding katmanının API belgelerine ve ek bilgi için tf.tpu.experimental.embedding.TableConfig ve tf.tpu.experimental.embedding.FeatureConfig belgelerine bakın. tf.distribute.TPUStrategy genel bir bakış için, Dağıtılmış eğitim kılavuzuna ve TPU'ları Kullanma kılavuzuna bakın. TPUEstimator geçiş TPUStrategy , TPU geçiş kılavuzuna bakın.

Kurmak

TensorFlow Önerilerini yükleyerek ve gerekli bazı paketleri içe aktararak başlayın:

pip install tensorflow-recommenders
import tensorflow as tf
import tensorflow.compat.v1 as tf1

# TPUEmbedding layer is not part of TensorFlow.
import tensorflow_recommenders as tfrs
-yer tutucu2 l10n-yer
/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/requests/__init__.py:104: RequestsDependencyWarning: urllib3 (1.26.8) or chardet (2.3.0)/charset_normalizer (2.0.11) doesn't match a supported version!
  RequestsDependencyWarning)

Ve gösteri amacıyla basit bir veri seti hazırlayın:

features = [[1., 1.5]]
embedding_features_indices = [[0, 0], [0, 1]]
embedding_features_values = [0, 5]
labels = [[0.3]]
eval_features = [[4., 4.5]]
eval_embedding_features_indices = [[0, 0], [0, 1]]
eval_embedding_features_values = [4, 3]
eval_labels = [[0.8]]

TensorFlow 1: TPUEstimator ile TPU'lardaki yerleştirmeleri eğitin

TensorFlow 1'de, tf.compat.v1.tpu.experimental.embedding_column API'sini kullanarak TPU yerleştirmelerini ayarlar ve modeli tf.compat.v1.estimator.tpu.TPUEstimator ile tf.compat.v1.estimator.tpu.TPUEstimator eğitir/değerlendirirsiniz.

Girişler, TPU yerleştirme tablosu için sıfırdan sözcük boyutuna kadar değişen tam sayılardır. Girişleri tf.feature_column.categorical_column_with_identity ile kategorik kimliğe kodlamakla başlayın. Girdi özellikleri tamsayı değerli olduğundan, key parametresi için "sparse_feature" kullanın, num_buckets ise gömme tablosunun ( 10 ) sözcük boyutudur.

embedding_id_column = (
      tf1.feature_column.categorical_column_with_identity(
          key="sparse_feature", num_buckets=10))

Ardından, seyrek kategorik girdileri tpu.experimental.embedding_column ile yoğun bir temsile dönüştürün; burada dimension , gömme tablosunun genişliğidir. num_buckets her biri için bir gömme vektörü depolayacaktır.

embedding_column = tf1.tpu.experimental.embedding_column(
    embedding_id_column, dimension=5)

Şimdi, TPU'ya özgü gömme yapılandırmasını tf.estimator.tpu.experimental.EmbeddingConfigSpec aracılığıyla tanımlayın. Bunu daha sonra embedding_config_spec parametresi olarak tf.estimator.tpu.TPUEstimator .

embedding_config_spec = tf1.estimator.tpu.experimental.EmbeddingConfigSpec(
    feature_columns=(embedding_column,),
    optimization_parameters=(
        tf1.tpu.experimental.AdagradParameters(0.05)))

Ardından, bir TPUEstimator kullanmak için şunları tanımlayın:

  • Eğitim verileri için bir giriş işlevi
  • Değerlendirme verileri için bir değerlendirme girdi işlevi
  • TPUEstimator eğitim işleminin özellikler ve etiketlerle nasıl tanımlandığını bildiren bir model işlevi
def _input_fn(params):
  dataset = tf1.data.Dataset.from_tensor_slices((
      {"dense_feature": features,
       "sparse_feature": tf1.SparseTensor(
           embedding_features_indices,
           embedding_features_values, [1, 2])},
           labels))
  dataset = dataset.repeat()
  return dataset.batch(params['batch_size'], drop_remainder=True)

def _eval_input_fn(params):
  dataset = tf1.data.Dataset.from_tensor_slices((
      {"dense_feature": eval_features,
       "sparse_feature": tf1.SparseTensor(
           eval_embedding_features_indices,
           eval_embedding_features_values, [1, 2])},
           eval_labels))
  dataset = dataset.repeat()
  return dataset.batch(params['batch_size'], drop_remainder=True)

def _model_fn(features, labels, mode, params):
  embedding_features = tf1.keras.layers.DenseFeatures(embedding_column)(features)
  concatenated_features = tf1.keras.layers.Concatenate(axis=1)(
      [embedding_features, features["dense_feature"]])
  logits = tf1.layers.Dense(1)(concatenated_features)
  loss = tf1.losses.mean_squared_error(labels=labels, predictions=logits)
  optimizer = tf1.train.AdagradOptimizer(0.05)
  optimizer = tf1.tpu.CrossShardOptimizer(optimizer)
  train_op = optimizer.minimize(loss, global_step=tf1.train.get_global_step())
  return tf1.estimator.tpu.TPUEstimatorSpec(mode, loss=loss, train_op=train_op)

Tanımlanan bu işlevlerle, küme bilgilerini sağlayan bir tf.distribute.cluster_resolver.TPUClusterResolver ve bir tf.compat.v1.estimator.tpu.RunConfig nesnesi oluşturun.

Tanımladığınız model fonksiyonu ile birlikte artık bir TPUEstimator oluşturabilirsiniz. Burada, kontrol noktası tasarrufunu atlayarak akışı basitleştireceksiniz. Ardından, TPUEstimator için hem eğitim hem de değerlendirme için toplu iş boyutunu belirteceksiniz.

cluster_resolver = tf1.distribute.cluster_resolver.TPUClusterResolver(tpu='')
print("All devices: ", tf1.config.list_logical_devices('TPU'))
All devices:  []
yer tutucu10 l10n-yer
tpu_config = tf1.estimator.tpu.TPUConfig(
    iterations_per_loop=10,
    per_host_input_for_training=tf1.estimator.tpu.InputPipelineConfig
          .PER_HOST_V2)
config = tf1.estimator.tpu.RunConfig(
    cluster=cluster_resolver,
    save_checkpoints_steps=None,
    tpu_config=tpu_config)
estimator = tf1.estimator.tpu.TPUEstimator(
    model_fn=_model_fn, config=config, train_batch_size=8, eval_batch_size=8,
    embedding_config_spec=embedding_config_spec)
WARNING:tensorflow:Estimator's model_fn (<function _model_fn at 0x7eff1dbf4ae8>) includes params argument, but params are not passed to Estimator.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpc68an8jx
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpc68an8jx', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true
cluster_def {
  job {
    name: "worker"
    tasks {
      key: 0
      value: "10.240.1.2:8470"
    }
  }
}
isolate_session_state: true
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({'worker': ['10.240.1.2:8470']}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': 'grpc://10.240.1.2:8470', '_evaluation_master': 'grpc://10.240.1.2:8470', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_tpu_config': TPUConfig(iterations_per_loop=10, num_shards=None, num_cores_per_replica=None, per_host_input_for_training=3, tpu_job_name=None, initial_infeed_sleep_secs=None, input_partition_dims=None, eval_training_input_configuration=2, experimental_host_call_every_n_steps=1, experimental_allow_per_host_v2_parallel_get_next=False, experimental_feed_hook=None), '_cluster': <tensorflow.python.distribute.cluster_resolver.tpu.tpu_cluster_resolver.TPUClusterResolver object at 0x7eff1dbfa2b0>}
INFO:tensorflow:_TPUContext: eval_on_tpu True

Modeli eğitmeye başlamak için TPUEstimator.train arayın:

estimator.train(_input_fn, steps=1)
tutucu13 l10n-yer
INFO:tensorflow:Querying Tensorflow master (grpc://10.240.1.2:8470) for TPU system metadata.
INFO:tensorflow:Found TPU system:
INFO:tensorflow:*** Num TPU Cores: 8
INFO:tensorflow:*** Num TPU Workers: 1
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, -1, -3018931587863375246)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, 1249032734884062775)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, -3881759543008185868)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 17179869184, -3421771184935649663)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 17179869184, 8872583169621331661)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 17179869184, -1222373804129613329)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 17179869184, 6258068298163390748)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 17179869184, 5190265587768274342)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 17179869184, 3073578684150069836)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 17179869184, 2071242092327503173)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, -1319360343564144287)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
INFO:tensorflow:Calling model_fn.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/tpu/feature_column_v2.py:479: IdentityCategoricalColumn._num_buckets (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version.
Instructions for updating:
The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead.
INFO:tensorflow:Querying Tensorflow master (grpc://10.240.1.2:8470) for TPU system metadata.
INFO:tensorflow:Found TPU system:
INFO:tensorflow:*** Num TPU Cores: 8
INFO:tensorflow:*** Num TPU Workers: 1
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, -1, -3018931587863375246)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, 1249032734884062775)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, -3881759543008185868)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 17179869184, -3421771184935649663)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 17179869184, 8872583169621331661)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 17179869184, -1222373804129613329)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 17179869184, 6258068298163390748)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 17179869184, 5190265587768274342)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 17179869184, 3073578684150069836)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 17179869184, 2071242092327503173)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, -1319360343564144287)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/adagrad.py:77: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
INFO:tensorflow:Bypassing TPUEstimator hook
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:TPU job name worker
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:758: Variable.load (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Prefer Variable.assign which has equivalent behavior in 2.X.
INFO:tensorflow:Initialized dataset iterators in 0 seconds
INFO:tensorflow:Installing graceful shutdown hook.
INFO:tensorflow:Creating heartbeat manager for ['/job:worker/replica:0/task:0/device:CPU:0']
INFO:tensorflow:Configuring worker heartbeat: shutdown_mode: WAIT_FOR_COORDINATOR

INFO:tensorflow:Init TPU system
INFO:tensorflow:Initialized TPU in 9 seconds
INFO:tensorflow:Starting infeed thread controller.
INFO:tensorflow:Starting outfeed thread controller.
INFO:tensorflow:Enqueue next (1) batch(es) of data to infeed.
INFO:tensorflow:Dequeue next (1) batch(es) of data from outfeed.
INFO:tensorflow:Outfeed finished for iteration (0, 0)
INFO:tensorflow:loss = 0.5212165, step = 1
INFO:tensorflow:Stop infeed thread controller
INFO:tensorflow:Shutting down InfeedController thread.
INFO:tensorflow:InfeedController received shutdown signal, stopping.
INFO:tensorflow:Infeed thread finished, shutting down.
INFO:tensorflow:infeed marked as finished
INFO:tensorflow:Stop output thread controller
INFO:tensorflow:Shutting down OutfeedController thread.
INFO:tensorflow:OutfeedController received shutdown signal, stopping.
INFO:tensorflow:Outfeed thread finished, shutting down.
INFO:tensorflow:outfeed marked as finished
INFO:tensorflow:Shutdown TPU system.
INFO:tensorflow:Loss for final step: 0.5212165.
INFO:tensorflow:training_loop marked as finished
<tensorflow_estimator.python.estimator.tpu.tpu_estimator.TPUEstimator at 0x7eff1dbfa7b8>

Ardından, değerlendirme verilerini kullanarak modeli değerlendirmek için TPUEstimator.evaluate arayın:

estimator.evaluate(_eval_input_fn, steps=1)
tutucu15 l10n-yer
INFO:tensorflow:Could not find trained model in model_dir: /tmp/tmpc68an8jx, running initialization to evaluate.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Querying Tensorflow master (grpc://10.240.1.2:8470) for TPU system metadata.
INFO:tensorflow:Found TPU system:
INFO:tensorflow:*** Num TPU Cores: 8
INFO:tensorflow:*** Num TPU Workers: 1
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, -1, -3018931587863375246)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, 1249032734884062775)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, -3881759543008185868)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 17179869184, -3421771184935649663)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 17179869184, 8872583169621331661)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 17179869184, -1222373804129613329)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 17179869184, 6258068298163390748)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 17179869184, 5190265587768274342)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 17179869184, 3073578684150069836)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 17179869184, 2071242092327503173)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, -1319360343564144287)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:3406: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Deprecated in favor of operator or tf.math.divide.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-02-05T13:21:42
INFO:tensorflow:TPU job name worker
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Init TPU system
INFO:tensorflow:Initialized TPU in 11 seconds
INFO:tensorflow:Starting infeed thread controller.
INFO:tensorflow:Starting outfeed thread controller.
INFO:tensorflow:Initialized dataset iterators in 0 seconds
INFO:tensorflow:Enqueue next (1) batch(es) of data to infeed.
INFO:tensorflow:Dequeue next (1) batch(es) of data from outfeed.
INFO:tensorflow:Outfeed finished for iteration (0, 0)
INFO:tensorflow:Evaluation [1/1]
INFO:tensorflow:Stop infeed thread controller
INFO:tensorflow:Shutting down InfeedController thread.
INFO:tensorflow:InfeedController received shutdown signal, stopping.
INFO:tensorflow:Infeed thread finished, shutting down.
INFO:tensorflow:infeed marked as finished
INFO:tensorflow:Stop output thread controller
INFO:tensorflow:Shutting down OutfeedController thread.
INFO:tensorflow:OutfeedController received shutdown signal, stopping.
INFO:tensorflow:Outfeed thread finished, shutting down.
INFO:tensorflow:outfeed marked as finished
INFO:tensorflow:Shutdown TPU system.
INFO:tensorflow:Inference Time : 12.50468s
INFO:tensorflow:Finished evaluation at 2022-02-05-13:21:54
INFO:tensorflow:Saving dict for global step 1: global_step = 1, loss = 36.28813
INFO:tensorflow:evaluation_loop marked as finished
{'loss': 36.28813, 'global_step': 1}

TensorFlow 2: TPUStrategy ile TPU'lardaki yerleştirmeleri eğitin

TensorFlow 2'de TPU çalışanlarını eğitmek için model tanımı ve eğitim/değerlendirme için Keras API'leri ile birlikte tf.distribute.TPUStrategy kullanın. (Keras Model.fit ve özel bir eğitim döngüsüyle ( tf.function ve tf.GradientTape ile) daha fazla eğitim örneği için TPU'ları Kullanma kılavuzuna bakın.)

Uzak kümeye bağlanmak ve TPU çalışanlarını başlatmak için bazı başlatma çalışmaları yapmanız gerektiğinden, küme bilgilerini sağlamak ve kümeye bağlanmak için bir TPUClusterResolver oluşturarak başlayın. ( TPU kullanma kılavuzunun TPU başlatma bölümünde daha fazla bilgi edinin.)

cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='')
tf.config.experimental_connect_to_cluster(cluster_resolver)
tf.tpu.experimental.initialize_tpu_system(cluster_resolver)
print("All devices: ", tf.config.list_logical_devices('TPU'))
tutucu17 l10n-yer
INFO:tensorflow:Clearing out eager caches
INFO:tensorflow:Clearing out eager caches
INFO:tensorflow:Initializing the TPU system: grpc://10.240.1.2:8470
INFO:tensorflow:Initializing the TPU system: grpc://10.240.1.2:8470
INFO:tensorflow:Finished initializing TPU system.
INFO:tensorflow:Finished initializing TPU system.
All devices:  [LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:0', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:1', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:2', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:3', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:4', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:5', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:6', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:7', device_type='TPU')]

Ardından, verilerinizi hazırlayın. Bu, TensorFlow 1 örneğinde bir veri kümesini nasıl oluşturduğunuza benzer, ancak veri kümesi işlevinin artık bir params dict yerine bir tf.distribute.InputContext nesnesi iletilmesi dışında. Bu nesneyi, yerel toplu iş boyutunu (ve bu işlem hattının hangi ana bilgisayar için olduğunu) belirlemek için kullanabilirsiniz, böylece verilerinizi uygun şekilde bölümleyebilirsiniz.

  • tfrs.layers.embedding.TPUEmbedding API'sini kullanırken, TPUEmbedding sabit bir toplu iş boyutu gerektirdiğinden, veri kümesi Dataset.batch ile gruplanırken drop_remainder=True seçeneğinin dahil edilmesi önemlidir.
  • Ayrıca, aynı cihaz setinde gerçekleştiriliyorsa, değerlendirme ve eğitim için aynı parti boyutu kullanılmalıdır.
  • Son olarak, tf.distribute.InputOptions (stratejiye özel konfigürasyonları tutan) özel giriş seçeneğiyle birlikte tf.keras.utils.experimental.DatasetCreator kullanmalısınız ( experimental_fetch_to_device=False ). Bu aşağıda gösterilmiştir:
global_batch_size = 8

def _input_dataset(context: tf.distribute.InputContext):
  dataset = tf.data.Dataset.from_tensor_slices((
      {"dense_feature": features,
       "sparse_feature": tf.SparseTensor(
           embedding_features_indices,
           embedding_features_values, [1, 2])},
           labels))
  dataset = dataset.shuffle(10).repeat()
  dataset = dataset.batch(
      context.get_per_replica_batch_size(global_batch_size),
      drop_remainder=True)
  return dataset.prefetch(2)

def _eval_dataset(context: tf.distribute.InputContext):
  dataset = tf.data.Dataset.from_tensor_slices((
      {"dense_feature": eval_features,
       "sparse_feature": tf.SparseTensor(
           eval_embedding_features_indices,
           eval_embedding_features_values, [1, 2])},
           eval_labels))
  dataset = dataset.repeat()
  dataset = dataset.batch(
      context.get_per_replica_batch_size(global_batch_size),
      drop_remainder=True)
  return dataset.prefetch(2)

input_options = tf.distribute.InputOptions(
    experimental_fetch_to_device=False)

input_dataset = tf.keras.utils.experimental.DatasetCreator(
    _input_dataset, input_options=input_options)

eval_dataset = tf.keras.utils.experimental.DatasetCreator(
    _eval_dataset, input_options=input_options)

Ardından, veriler hazırlandıktan sonra bir TPUStrategy oluşturacak ve bu strateji kapsamında bir model, metrikler ve bir optimize edici tanımlayacaksınız ( Strategy.scope ).

Her tf.function çağrısı sırasında çalıştırılacak toplu Model.compile steps_per_execution bir sayı seçmelisiniz. Bu argüman TPUEstimator kullanılan iterations_per_loop ile benzerdir.

TensorFlow 1'de tf.tpu.experimental.embedding_column (ve tf.tpu.experimental.shared_embedding_column ) aracılığıyla belirtilen özellikler ve tablo yapılandırması, bir çift yapılandırma nesnesi aracılığıyla doğrudan TensorFlow 2'de belirtilebilir:

(Daha fazla ayrıntı için ilgili API belgelerine bakın.)

strategy = tf.distribute.TPUStrategy(cluster_resolver)
with strategy.scope():
  optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05)
  dense_input = tf.keras.Input(shape=(2,), dtype=tf.float32, batch_size=global_batch_size)
  sparse_input = tf.keras.Input(shape=(), dtype=tf.int32, batch_size=global_batch_size)
  embedded_input = tfrs.layers.embedding.TPUEmbedding(
      feature_config=tf.tpu.experimental.embedding.FeatureConfig(
          table=tf.tpu.experimental.embedding.TableConfig(
              vocabulary_size=10,
              dim=5,
              initializer=tf.initializers.TruncatedNormal(mean=0.0, stddev=1)),
          name="sparse_input"),
      optimizer=optimizer)(sparse_input)
  input = tf.keras.layers.Concatenate(axis=1)([dense_input, embedded_input])
  result = tf.keras.layers.Dense(1)(input)
  model = tf.keras.Model(inputs={"dense_feature": dense_input, "sparse_feature": sparse_input}, outputs=result)
  model.compile(optimizer, "mse", steps_per_execution=10)
tutucu20 l10n-yer
INFO:tensorflow:Found TPU system:
INFO:tensorflow:Found TPU system:
INFO:tensorflow:*** Num TPU Cores: 8
INFO:tensorflow:*** Num TPU Cores: 8
INFO:tensorflow:*** Num TPU Workers: 1
INFO:tensorflow:*** Num TPU Workers: 1
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)

Bununla, modeli eğitim veri seti ile eğitmeye hazırsınız:

model.fit(input_dataset, epochs=5, steps_per_epoch=10)
tutucu22 l10n-yer
Epoch 1/5
10/10 [==============================] - 2s 164ms/step - loss: 0.4005
Epoch 2/5
10/10 [==============================] - 0s 3ms/step - loss: 0.0036
Epoch 3/5
10/10 [==============================] - 0s 3ms/step - loss: 3.0932e-05
Epoch 4/5
10/10 [==============================] - 0s 3ms/step - loss: 2.5767e-07
Epoch 5/5
10/10 [==============================] - 0s 3ms/step - loss: 2.1366e-09
<keras.callbacks.History at 0x7efd8c461c18>

Son olarak, değerlendirme veri kümesini kullanarak modeli değerlendirin:

model.evaluate(eval_dataset, steps=1, return_dict=True)
tutucu24 l10n-yer
1/1 [==============================] - 1s 1s/step - loss: 15.3952
{'loss': 15.395216941833496}

Sonraki adımlar

API belgelerinde TPU'ya özel yerleştirmeler ayarlama hakkında daha fazla bilgi edinin:

TPUStrategy 2'deki TPUStrategy hakkında daha fazla bilgi için aşağıdaki kaynakları göz önünde bulundurun:

Eğitiminizi özelleştirme hakkında daha fazla bilgi edinmek için şu adrese bakın:

Google'ın makine öğrenimi için özel ASIC'leri olan TPU'lar, Google Colab , TPU Research Cloud ve Cloud TPU aracılığıyla kullanılabilir.