Lệnh gọi lại Migrate SessionRunHook to Keras

Xem trên TensorFlow.org Chạy trong Google Colab Xem nguồn trên GitHub Tải xuống sổ ghi chép

Trong TensorFlow 1, để tùy chỉnh hành vi đào tạo, bạn sử dụng tf.estimator.SessionRunHook với tf.estimator.Estimator . Hướng dẫn này trình bày cách di chuyển từ SessionRunHook sang lệnh gọi lại tùy chỉnh của TensorFlow 2 bằng API tf.keras.callbacks.Callback , hoạt động với Keras Model.fit để đào tạo (cũng như Model.evaluateModel.predict ). Bạn sẽ học cách thực hiện điều này bằng cách triển khai một SessionRunHook và một tác vụ Callback đo lường các ví dụ trên giây trong quá trình đào tạo.

Ví dụ về các cuộc gọi lại là lưu điểm kiểm tra ( tf.keras.callbacks.ModelCheckpoint ) và viết tóm tắt TensorBoard . Các lệnh gọi lại Keras là các đối tượng được gọi tại các điểm khác nhau trong quá trình đào tạo / đánh giá / dự đoán trong các API Model.fit / Model.evaluate / Model.predict dự đoán tích hợp sẵn. Bạn có thể tìm hiểu thêm về lệnh gọi lại trong tài liệu API tf.keras.callbacks.Callback , cũng như hướng dẫn Viết lệnh gọi lạiĐào tạo và đánh giá của riêng bạn bằng các phương pháp tích hợp (phần Sử dụng lệnh gọi lại ).

Thành lập

Bắt đầu với nhập khẩu và một tập dữ liệu đơn giản cho mục đích trình diễn:

import tensorflow as tf
import tensorflow.compat.v1 as tf1

import time
from datetime import datetime
from absl import flags
features = [[1., 1.5], [2., 2.5], [3., 3.5]]
labels = [[0.3], [0.5], [0.7]]
eval_features = [[4., 4.5], [5., 5.5], [6., 6.5]]
eval_labels = [[0.8], [0.9], [1.]]

TensorFlow 1: Tạo SessionRunHook tùy chỉnh với các API tf.estimator

Các ví dụ TensorFlow 1 sau đây cho thấy cách thiết lập SessionRunHook tùy chỉnh đo lường các ví dụ trên giây trong quá trình đào tạo. Sau khi tạo hook ( LoggerHook ), hãy chuyển nó vào tham số hooks của tf.estimator.Estimator.train .

def _input_fn():
  return tf1.data.Dataset.from_tensor_slices(
      (features, labels)).batch(1).repeat(100)

def _model_fn(features, labels, mode):
  logits = tf1.layers.Dense(1)(features)
  loss = tf1.losses.mean_squared_error(labels=labels, predictions=logits)
  optimizer = tf1.train.AdagradOptimizer(0.05)
  train_op = optimizer.minimize(loss, global_step=tf1.train.get_global_step())
  return tf1.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
class LoggerHook(tf1.train.SessionRunHook):
  """Logs loss and runtime."""

  def begin(self):
    self._step = -1
    self._start_time = time.time()
    self.log_frequency = 10

  def before_run(self, run_context):
    self._step += 1

  def after_run(self, run_context, run_values):
    if self._step % self.log_frequency == 0:
      current_time = time.time()
      duration = current_time - self._start_time
      self._start_time = current_time
      examples_per_sec = self.log_frequency / duration
      print('Time:', datetime.now(), ', Step #:', self._step,
            ', Examples per second:', examples_per_sec)

estimator = tf1.estimator.Estimator(model_fn=_model_fn)

# Begin training.
estimator.train(_input_fn, hooks=[LoggerHook()])
INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpe4lxk_r8
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpe4lxk_r8', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
INFO:tensorflow:Calling model_fn.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/adagrad.py:77: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpe4lxk_r8/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
Time: 2021-10-26 01:34:53.978329 , Step #: 0 , Examples per second: 6.5659573368942015
INFO:tensorflow:loss = 0.272405, step = 0
Time: 2021-10-26 01:34:54.010834 , Step #: 10 , Examples per second: 307.6243353258279
Time: 2021-10-26 01:34:54.020112 , Step #: 20 , Examples per second: 1077.700865900974
Time: 2021-10-26 01:34:54.029483 , Step #: 30 , Examples per second: 1067.1171606665819
Time: 2021-10-26 01:34:54.039412 , Step #: 40 , Examples per second: 1007.1566814743667
Time: 2021-10-26 01:34:54.048087 , Step #: 50 , Examples per second: 1152.756355641061
Time: 2021-10-26 01:34:54.056877 , Step #: 60 , Examples per second: 1137.6234777184084
Time: 2021-10-26 01:34:54.066122 , Step #: 70 , Examples per second: 1081.6752630493088
Time: 2021-10-26 01:34:54.074645 , Step #: 80 , Examples per second: 1173.2647067050827
Time: 2021-10-26 01:34:54.083555 , Step #: 90 , Examples per second: 1122.3118912554853
INFO:tensorflow:global_step/sec: 866.456
Time: 2021-10-26 01:34:54.094488 , Step #: 100 , Examples per second: 914.6685275645499
INFO:tensorflow:loss = 0.00072448375, step = 100 (0.116 sec)
Time: 2021-10-26 01:34:54.104045 , Step #: 110 , Examples per second: 1046.3525009355121
Time: 2021-10-26 01:34:54.112493 , Step #: 120 , Examples per second: 1183.7949817956028
Time: 2021-10-26 01:34:54.120903 , Step #: 130 , Examples per second: 1189.0301913536498
Time: 2021-10-26 01:34:54.129681 , Step #: 140 , Examples per second: 1139.106488145352
Time: 2021-10-26 01:34:54.138138 , Step #: 150 , Examples per second: 1182.5933966786026
Time: 2021-10-26 01:34:54.146595 , Step #: 160 , Examples per second: 1182.4933746828306
Time: 2021-10-26 01:34:54.155248 , Step #: 170 , Examples per second: 1155.551147477753
Time: 2021-10-26 01:34:54.163869 , Step #: 180 , Examples per second: 1159.993362464738
Time: 2021-10-26 01:34:54.172881 , Step #: 190 , Examples per second: 1109.5455266917095
INFO:tensorflow:global_step/sec: 1129.39
Time: 2021-10-26 01:34:54.183226 , Step #: 200 , Examples per second: 966.6745027541543
INFO:tensorflow:loss = 0.004354417, step = 200 (0.088 sec)
Time: 2021-10-26 01:34:54.192698 , Step #: 210 , Examples per second: 1055.8082867643357
Time: 2021-10-26 01:34:54.201008 , Step #: 220 , Examples per second: 1203.288865937975
Time: 2021-10-26 01:34:54.209423 , Step #: 230 , Examples per second: 1188.3900946336487
Time: 2021-10-26 01:34:54.218621 , Step #: 240 , Examples per second: 1087.1987350631173
Time: 2021-10-26 01:34:54.227779 , Step #: 250 , Examples per second: 1091.9538673817397
Time: 2021-10-26 01:34:54.236563 , Step #: 260 , Examples per second: 1138.4571955919873
Time: 2021-10-26 01:34:54.244876 , Step #: 270 , Examples per second: 1202.9437577078613
Time: 2021-10-26 01:34:54.253524 , Step #: 280 , Examples per second: 1156.2838396647737
Time: 2021-10-26 01:34:54.262094 , Step #: 290 , Examples per second: 1166.8671581582973
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 300...
INFO:tensorflow:Saving checkpoints for 300 into /tmp/tmpe4lxk_r8/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 300...
INFO:tensorflow:Loss for final step: 0.0026133624.
<tensorflow_estimator.python.estimator.estimator.Estimator at 0x7f9750e2efd0>

TensorFlow 2: Tạo lệnh gọi lại Keras tùy chỉnh cho Model.fit

Trong TensorFlow 2, khi bạn sử dụng Keras Model.fit (hoặc Model.evaluate ) tích hợp để đào tạo / đánh giá, bạn có thể định cấu hình tf.keras.callbacks.Callback tùy chỉnh, sau đó bạn chuyển cho tham số callbacks của Model.fit (hoặc Model.evaluate ). (Tìm hiểu thêm trong hướng dẫn Viết lệnh gọi lại của riêng bạn .)

Trong ví dụ bên dưới, bạn sẽ viết một tf.keras.callbacks.Callback tùy chỉnh ghi lại các số liệu khác nhau — nó sẽ đo lường các ví dụ trên giây, có thể so sánh với các số liệu trong ví dụ SessionRunHook trước đó.

class CustomCallback(tf.keras.callbacks.Callback):

    def on_train_begin(self, logs = None):
      self._step = -1
      self._start_time = time.time()
      self.log_frequency = 10

    def on_train_batch_begin(self, batch, logs = None):
      self._step += 1

    def on_train_batch_end(self, batch, logs = None):
      if self._step % self.log_frequency == 0:
        current_time = time.time()
        duration = current_time - self._start_time
        self._start_time = current_time
        examples_per_sec = self.log_frequency / duration
        print('Time:', datetime.now(), ', Step #:', self._step,
              ', Examples per second:', examples_per_sec)

callback = CustomCallback()

dataset = tf.data.Dataset.from_tensor_slices(
    (features, labels)).batch(1).repeat(100)

model = tf.keras.models.Sequential([tf.keras.layers.Dense(1)])
optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05)

model.compile(optimizer, "mse")

# Begin training.
result = model.fit(dataset, callbacks=[callback], verbose = 0)
# Provide the results of training metrics.
result.history
Time: 2021-10-26 01:34:54.545193 , Step #: 0 , Examples per second: 47.66297875435231
Time: 2021-10-26 01:34:54.558176 , Step #: 10 , Examples per second: 770.1198979123442
Time: 2021-10-26 01:34:54.570778 , Step #: 20 , Examples per second: 793.5191176192368
Time: 2021-10-26 01:34:54.583033 , Step #: 30 , Examples per second: 815.9807011400335
Time: 2021-10-26 01:34:54.595632 , Step #: 40 , Examples per second: 793.6993093007853
Time: 2021-10-26 01:34:54.607942 , Step #: 50 , Examples per second: 812.3458320421444
Time: 2021-10-26 01:34:54.619847 , Step #: 60 , Examples per second: 840.0368515922291
Time: 2021-10-26 01:34:54.632529 , Step #: 70 , Examples per second: 788.4919351806594
Time: 2021-10-26 01:34:54.646415 , Step #: 80 , Examples per second: 720.1881900444719
Time: 2021-10-26 01:34:54.659728 , Step #: 90 , Examples per second: 751.1154886194731
Time: 2021-10-26 01:34:54.672811 , Step #: 100 , Examples per second: 764.3517877318949
Time: 2021-10-26 01:34:54.685740 , Step #: 110 , Examples per second: 773.5000461041955
Time: 2021-10-26 01:34:54.698443 , Step #: 120 , Examples per second: 787.2192192192192
Time: 2021-10-26 01:34:54.711277 , Step #: 130 , Examples per second: 779.161449722279
Time: 2021-10-26 01:34:54.725101 , Step #: 140 , Examples per second: 723.355408388521
Time: 2021-10-26 01:34:54.738438 , Step #: 150 , Examples per second: 749.7861994994637
Time: 2021-10-26 01:34:54.752388 , Step #: 160 , Examples per second: 716.8280010937927
Time: 2021-10-26 01:34:54.765563 , Step #: 170 , Examples per second: 759.0538755270826
Time: 2021-10-26 01:34:54.779201 , Step #: 180 , Examples per second: 733.295569775167
Time: 2021-10-26 01:34:54.792040 , Step #: 190 , Examples per second: 778.8865366759517
Time: 2021-10-26 01:34:54.804998 , Step #: 200 , Examples per second: 771.664274938367
Time: 2021-10-26 01:34:54.818003 , Step #: 210 , Examples per second: 768.9762393663831
Time: 2021-10-26 01:34:54.831546 , Step #: 220 , Examples per second: 738.3428098649814
Time: 2021-10-26 01:34:54.845028 , Step #: 230 , Examples per second: 741.7245525924878
Time: 2021-10-26 01:34:54.858053 , Step #: 240 , Examples per second: 767.7375896910236
Time: 2021-10-26 01:34:54.871158 , Step #: 250 , Examples per second: 763.0585624101734
Time: 2021-10-26 01:34:54.883612 , Step #: 260 , Examples per second: 802.922010796738
Time: 2021-10-26 01:34:54.896472 , Step #: 270 , Examples per second: 777.6301981941895
Time: 2021-10-26 01:34:54.909765 , Step #: 280 , Examples per second: 752.2740561384629
Time: 2021-10-26 01:34:54.922856 , Step #: 290 , Examples per second: 763.8645759347284
{'loss': [0.33093082904815674]}

Bước tiếp theo

Tìm hiểu thêm về gọi lại trong:

Bạn cũng có thể thấy hữu ích các tài nguyên liên quan đến di chuyển sau: