Xem trên TensorFlow.org | Chạy trong Google Colab | Xem nguồn trên GitHub | Tải xuống sổ ghi chép |
Hướng dẫn này trình bày cách di chuyển quy trình làm việc đa GPU đơn nhân từ TensorFlow 1 sang TensorFlow 2.
Để thực hiện đào tạo đồng bộ trên nhiều GPU trên một máy:
- Trong TensorFlow 1, bạn sử dụng các API
tf.estimator.Estimator
vớitf.distribute.MirroredStrategy
. - Trong TensorFlow 2, bạn có thể sử dụng Keras Model.fit hoặc vòng lặp đào tạo tùy chỉnh với
tf.distribute.MirroredStrategy
. Tìm hiểu thêm trong hướng dẫn Phân tán với TensorFlow .
Thành lập
Bắt đầu với nhập khẩu và một tập dữ liệu đơn giản cho mục đích trình diễn:
import tensorflow as tf
import tensorflow.compat.v1 as tf1
features = [[1., 1.5], [2., 2.5], [3., 3.5]]
labels = [[0.3], [0.5], [0.7]]
eval_features = [[4., 4.5], [5., 5.5], [6., 6.5]]
eval_labels = [[0.8], [0.9], [1.]]
TensorFlow 1: Đào tạo phân tán cho một nhân viên với tf.estimator.Estimator
Ví dụ này minh họa quy trình làm việc chuẩn của TensorFlow 1 về đào tạo đa GPU cho một nhân viên. Bạn cần đặt chiến lược phân phối ( tf.distribute.MirroredStrategy
) thông qua tham số config
của tf.estimator.Estimator
:
def _input_fn():
return tf1.data.Dataset.from_tensor_slices((features, labels)).batch(1)
def _eval_input_fn():
return tf1.data.Dataset.from_tensor_slices(
(eval_features, eval_labels)).batch(1)
def _model_fn(features, labels, mode):
logits = tf1.layers.Dense(1)(features)
loss = tf1.losses.mean_squared_error(labels=labels, predictions=logits)
optimizer = tf1.train.AdagradOptimizer(0.05)
train_op = optimizer.minimize(loss, global_step=tf1.train.get_global_step())
return tf1.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
strategy = tf1.distribute.MirroredStrategy()
config = tf1.estimator.RunConfig(
train_distribute=strategy, eval_distribute=strategy)
estimator = tf1.estimator.Estimator(model_fn=_model_fn, config=config)
train_spec = tf1.estimator.TrainSpec(input_fn=_input_fn)
eval_spec = tf1.estimator.EvalSpec(input_fn=_eval_input_fn)
tf1.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) INFO:tensorflow:Initializing RunConfig with distribution strategies. INFO:tensorflow:Not using Distribute Coordinator. WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmp5g_f_ufk INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmp5g_f_ufk', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': <tensorflow.python.distribute.mirrored_strategy.MirroredStrategyV1 object at 0x7f6853562450>, '_device_fn': None, '_protocol': None, '_eval_distribute': <tensorflow.python.distribute.mirrored_strategy.MirroredStrategyV1 object at 0x7f6853562450>, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_distribute_coordinator_mode': None} INFO:tensorflow:Not using Distribute Coordinator. INFO:tensorflow:Running training and evaluation locally (non-distributed). INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps None or save_checkpoints_secs 600. /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/data/ops/dataset_ops.py:374: UserWarning: To make it possible to preserve tf.data options across serialization boundaries, their implementation has moved to be part of the TensorFlow graph. As a consequence, the options value is in general no longer known at graph construction time. Invoking this method in graph mode retains the legacy behavior of the original implementation, but note that the returned value might not reflect the actual value of the options. warnings.warn("To make it possible to preserve tf.data options across " INFO:tensorflow:Calling model_fn. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/adagrad.py:77: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/util.py:95: DistributedIteratorV1.initialize (from tensorflow.python.distribute.input_lib) is deprecated and will be removed in a future version. Instructions for updating: Use the iterator's `initializer` property instead. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmp5g_f_ufk/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... 2021-09-22 20:15:43.228503: W tensorflow/core/grappler/utils/graph_view.cc:836] No registered 'MultiDeviceIteratorFromStringHandle' OpKernel for GPU devices compatible with node { {node MultiDeviceIteratorFromStringHandle} } . Registered: device='CPU' 2021-09-22 20:15:43.229960: W tensorflow/core/grappler/utils/graph_view.cc:836] No registered 'MultiDeviceIteratorGetNextFromShard' OpKernel for GPU devices compatible with node { {node MultiDeviceIteratorGetNextFromShard} } . Registered: device='CPU' INFO:tensorflow:loss = 0.14477473, step = 0 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 3... INFO:tensorflow:Saving checkpoints for 3 into /tmp/tmp5g_f_ufk/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 3... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Starting evaluation at 2021-09-22T20:15:43 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmp5g_f_ufk/model.ckpt-3 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Inference Time : 0.17626s INFO:tensorflow:Finished evaluation at 2021-09-22-20:15:44 INFO:tensorflow:Saving dict for global step 3: global_step = 3, loss = 1.1251448 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 3: /tmp/tmp5g_f_ufk/model.ckpt-3 INFO:tensorflow:Loss for final step: 0.45722964. 2021-09-22 20:15:44.095116: W tensorflow/core/grappler/utils/graph_view.cc:836] No registered 'MultiDeviceIteratorFromStringHandle' OpKernel for GPU devices compatible with node { {node MultiDeviceIteratorFromStringHandle} } . Registered: device='CPU' 2021-09-22 20:15:44.096454: W tensorflow/core/grappler/utils/graph_view.cc:836] No registered 'MultiDeviceIteratorGetNextFromShard' OpKernel for GPU devices compatible with node { {node MultiDeviceIteratorGetNextFromShard} } . Registered: device='CPU' ({'loss': 1.1251448, 'global_step': 3}, [])
TensorFlow 2: Đào tạo một nhân viên với Keras
Khi di chuyển sang TensorFlow 2, bạn có thể sử dụng API Keras với tf.distribute.MirroredStrategy
.
Nếu bạn sử dụng API tf.keras
để xây dựng mô hình và Keras Model.fit
để đào tạo, sự khác biệt chính là khởi tạo mô hình Keras, trình tối ưu hóa và các chỉ số trong ngữ cảnh của Strategy.scope
, thay vì xác định config
cho tf.estimator.Estimator
.
Nếu bạn cần sử dụng vòng lặp đào tạo tùy chỉnh, hãy xem hướng dẫn Sử dụng tf.distribute.Strategy với các vòng đào tạo tùy chỉnh .
dataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(1)
eval_dataset = tf.data.Dataset.from_tensor_slices(
(eval_features, eval_labels)).batch(1)
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
model = tf.keras.models.Sequential([tf.keras.layers.Dense(1)])
optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05)
model.compile(optimizer=optimizer, loss='mse')
model.fit(dataset)
model.evaluate(eval_dataset, return_dict=True)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). 2021-09-22 20:15:44.265351: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:695] AUTO sharding policy will apply DATA sharding policy as it failed to apply FILE sharding policy because of the following reason: Found an unshardable source dataset: name: "TensorSliceDataset/_2" op: "TensorSliceDataset" input: "Placeholder/_0" input: "Placeholder/_1" attr { key: "Toutput_types" value { list { type: DT_FLOAT type: DT_FLOAT } } } attr { key: "output_shapes" value { list { shape { dim { size: 2 } } shape { dim { size: 1 } } } } } INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). 3/3 [==============================] - 2s 3ms/step - loss: 0.2363 2021-09-22 20:15:46.836745: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:695] AUTO sharding policy will apply DATA sharding policy as it failed to apply FILE sharding policy because of the following reason: Found an unshardable source dataset: name: "TensorSliceDataset/_2" op: "TensorSliceDataset" input: "Placeholder/_0" input: "Placeholder/_1" attr { key: "Toutput_types" value { list { type: DT_FLOAT type: DT_FLOAT } } } attr { key: "output_shapes" value { list { shape { dim { size: 2 } } shape { dim { size: 1 } } } } } 3/3 [==============================] - 1s 3ms/step - loss: 0.0079 {'loss': 0.007883546873927116}
Bước tiếp theo
Để tìm hiểu thêm về đào tạo phân tán với tf.distribute.MirroredStrategy
trong TensorFlow 2, hãy xem tài liệu sau: