在 TensorFlow.org 上查看 | 在 Google Colab 运行 | 在 Github 上查看源代码 | 下载笔记本 |
本指南演示了如何从 TensorFlow 1 的 tf.estimator.Estimator
API 迁移到 TensorFlow 2 的 tf.keras
API。首先,您将使用 tf.estimator.Estimator
设置并运行一个用于训练和评估的基本模型。然后,您将使用 tf.keras
API 在 TensorFlow 2 中执行对应步骤。此外,您还将了解如何通过子类化 tf.keras.Model
和使用 tf.GradientTape
来自定义训练步骤。
- 在 TensorFlow 1 中,可以使用高级
tf.estimator.Estimator
API 训练和评估模型,以及执行推断和保存模型(用于提供)。 - 在 TensorFlow 2 中,使用 Keras API 执行上述任务,例如模型构建、梯度应用、训练、评估和预测。
(要将模型/检查点保存工作流迁移到 TensorFlow 2,请查看 SavedModel 和检查点迁移指南。)
安装
从导入和一个简单的数据集开始:
import tensorflow as tf
import tensorflow.compat.v1 as tf1
2022-12-14 20:31:21.142310: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory 2022-12-14 20:31:21.142404: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory 2022-12-14 20:31:21.142413: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
features = [[1., 1.5], [2., 2.5], [3., 3.5]]
labels = [[0.3], [0.5], [0.7]]
eval_features = [[4., 4.5], [5., 5.5], [6., 6.5]]
eval_labels = [[0.8], [0.9], [1.]]
TensorFlow 1:使用 tf.estimator.Estimator 进行训练和评估
此示例展示了如何在 TensorFlow 1 中使用 tf.estimator.Estimator
执行训练和评估。
首先定义几个函数:训练数据的输入函数,评估数据的评估输入函数,以及告知 Estimator
如何使用特征和标签定义训练运算的模型函数:
def _input_fn():
return tf1.data.Dataset.from_tensor_slices((features, labels)).batch(1)
def _eval_input_fn():
return tf1.data.Dataset.from_tensor_slices(
(eval_features, eval_labels)).batch(1)
def _model_fn(features, labels, mode):
logits = tf1.layers.Dense(1)(features)
loss = tf1.losses.mean_squared_error(labels=labels, predictions=logits)
optimizer = tf1.train.AdagradOptimizer(0.05)
train_op = optimizer.minimize(loss, global_step=tf1.train.get_global_step())
return tf1.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
实例化您的 Estimator
,并训练模型:
estimator = tf1.estimator.Estimator(model_fn=_model_fn)
estimator.train(_input_fn)
INFO:tensorflow:Using default config. WARNING:tensorflow:Using temporary folder as model directory: /tmpfs/tmp/tmpz5dhkiz0 INFO:tensorflow:Using config: {'_model_dir': '/tmpfs/tmp/tmpz5dhkiz0', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/training/training_util.py:396: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. INFO:tensorflow:Calling model_fn. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/training/adagrad.py:138: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmpfs/tmp/tmpz5dhkiz0/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:loss = 0.25646034, step = 0 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 3... INFO:tensorflow:Saving checkpoints for 3 into /tmpfs/tmp/tmpz5dhkiz0/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 3... INFO:tensorflow:Loss for final step: 0.012408661. <tensorflow_estimator.python.estimator.estimator.Estimator at 0x7eff345d8ca0>
使用评估集评估程序:
estimator.evaluate(_eval_input_fn)
INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:31:26 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmpz5dhkiz0/model.ckpt-3 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Inference Time : 0.25017s INFO:tensorflow:Finished evaluation at 2022-12-14-20:31:26 INFO:tensorflow:Saving dict for global step 3: global_step = 3, loss = 0.23348819 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 3: /tmpfs/tmp/tmpz5dhkiz0/model.ckpt-3 {'loss': 0.23348819, 'global_step': 3}
TensorFlow 2:使用内置 Keras 方法进行训练和评估
此示例演示了如何在 TensorFlow 2 中使用 Model.fit
和 Model.evaluate
执行训练和评估。(可以在使用内置方法进行训练和评估指南中了解详情。)
- 首先使用
tf.data.Dataset
API 准备数据集流水线。 - 使用一个线性 (
tf.keras.layers.Dense
) 层定义一个简单的 Keras 序贯模型。 - 实例化一个 Adagrad 优化器 (
tf.keras.optimizers.Adagrad
)。 - 通过将
optimizer
变量和均方差("mse"
)损失传递给Model.compile
来配置模型进行训练。
dataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(1)
eval_dataset = tf.data.Dataset.from_tensor_slices(
(eval_features, eval_labels)).batch(1)
model = tf.keras.models.Sequential([tf.keras.layers.Dense(1)])
optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05)
model.compile(optimizer=optimizer, loss="mse")
这样,您就可以通过调用 Model.fit
来训练模型了:
model.fit(dataset)
3/3 [==============================] - 0s 5ms/step - loss: 31.5912 <keras.callbacks.History at 0x7efe275d5ee0>
最后,使用 Model.evaluate
评估模型:
model.evaluate(eval_dataset, return_dict=True)
3/3 [==============================] - 0s 2ms/step - loss: 134.4299 {'loss': 134.429931640625}
TensorFlow 2:使用自定义训练步骤和内置 Keras 方法进行训练和评估
在 TensorFlow 2 中,还可以使用 tf.GradientTape
编写自己的自定义训练步骤函数来执行前向和后向传递,同时仍然利用内置的训练支持,例如 tf.keras.callbacks.Callback
和 tf.distribute.Strategy
。(在自定义 Model.fit 的功能和从头开始编写自定义训练循环中了解详情。)
在此示例中,首先通过子类化重写 Model.train_step
的 tf.keras.Sequential
来创建自定义 tf.keras.Model
。(详细了解如何子类化 tf.keras.Model)。在该类中,定义一个自定义 train_step
函数,此函数在一个训练步骤中为每批次数据执行前向传递和后向传递。
class CustomModel(tf.keras.Sequential):
"""A custom sequential model that overrides `Model.train_step`."""
def train_step(self, data):
batch_data, labels = data
with tf.GradientTape() as tape:
predictions = self(batch_data, training=True)
# Compute the loss value (the loss function is configured
# in `Model.compile`).
loss = self.compiled_loss(labels, predictions)
# Compute the gradients of the parameters with respect to the loss.
gradients = tape.gradient(loss, self.trainable_variables)
# Perform gradient descent by updating the weights/parameters.
self.optimizer.apply_gradients(zip(gradients, self.trainable_variables))
# Update the metrics (includes the metric that tracks the loss).
self.compiled_metrics.update_state(labels, predictions)
# Return a dict mapping metric names to the current values.
return {m.name: m.result() for m in self.metrics}
接下来,和之前一样:
- 使用
tf.data.Dataset
准备数据集流水线。 - 使用一个
tf.keras.layers.Dense
层定义一个简单的模型。 - 实例化 Adagrad (
tf.keras.optimizers.Adagrad
) - 使用
Model.compile
配置用于训练的模型,同时使用均方差("mse"
)作为损失函数。
dataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(1)
eval_dataset = tf.data.Dataset.from_tensor_slices(
(eval_features, eval_labels)).batch(1)
model = CustomModel([tf.keras.layers.Dense(1)])
optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05)
model.compile(optimizer=optimizer, loss="mse")
调用 Model.fit
以训练模型:
model.fit(dataset)
3/3 [==============================] - 0s 3ms/step - loss: 0.1047 <keras.callbacks.History at 0x7efe2b00cfd0>
最后,使用 Model.evaluate
评估程序:
model.evaluate(eval_dataset, return_dict=True)
3/3 [==============================] - 0s 3ms/step - loss: 0.5426 {'loss': 0.5425885319709778}
后续步骤
您可能会发现有用的其他 Keras 资源:
- 指南:使用内置方法进行训练和评估
- 指南:自定义 Model.fit 的功能
- 指南:从头开始编写训练循环
- 指南:通过子类化创建新的 Keras 层和模型
以下指南有助于从 tf.estimator
API 迁移分布策略工作流: