Migración de puntos de control del modelo

Ver en TensorFlow.org Ejecutar en Google Colab Ver en GitHub Descargar libreta

Descripción general

Esta guía asume que tiene un modelo que guarda y carga puntos de control con tf.compat.v1.Saver y desea migrar el código usando la API TF2 tf.train.Checkpoint , o usar puntos de control preexistentes en su modelo TF2.

A continuación se presentan algunos escenarios comunes que puede encontrar:

escenario 1

Hay puntos de control TF1 existentes de ejecuciones de entrenamiento anteriores que deben cargarse o convertirse a TF2.

Escenario 2

Está ajustando su modelo de una manera que corre el riesgo de cambiar los nombres y las rutas de las variables (como cuando se migra gradualmente de get_variable a la creación explícita de tf.Variable ), y le gustaría seguir guardando/cargando los puntos de control existentes en el camino.

Consulte la sección sobre cómo mantener la compatibilidad del punto de control durante la migración del modelo.

Escenario 3

Está migrando su código de entrenamiento y puntos de control a TF2, pero su canalización de inferencia continúa requiriendo puntos de control TF1 por ahora (para la estabilidad de la producción).

Opción 1

Guarde los puntos de control TF1 y TF2 durante el entrenamiento.

opcion 2

Convierta el punto de control TF2 en TF1.


Los ejemplos a continuación muestran todas las combinaciones de guardar y cargar puntos de control en TF1/TF2, por lo que tiene cierta flexibilidad para determinar cómo migrar su modelo.

Configuración

import tensorflow as tf
import tensorflow.compat.v1 as tf1

def print_checkpoint(save_path):
  reader = tf.train.load_checkpoint(save_path)
  shapes = reader.get_variable_to_shape_map()
  dtypes = reader.get_variable_to_dtype_map()
  print(f"Checkpoint at '{save_path}':")
  for key in shapes:
    print(f"  (key='{key}', shape={shapes[key]}, dtype={dtypes[key].name}, "
          f"value={reader.get_tensor(key)})")

Cambios de TF1 a TF2

Esta sección se incluye si tiene curiosidad acerca de lo que ha cambiado entre TF1 y TF2, y qué queremos decir con puntos de control "basados ​​en nombres" (TF1) frente a "basados ​​en objetos" (TF2).

Los dos tipos de puntos de control se guardan en el mismo formato, que es esencialmente una tabla de clave-valor. La diferencia radica en cómo se generan las claves.

Las claves en los puntos de control basados ​​en nombres son los nombres de las variables . Las claves en los puntos de control basados ​​en objetos se refieren a la ruta desde el objeto raíz hasta la variable (los ejemplos a continuación ayudarán a tener una mejor idea de lo que esto significa).

Primero, guarde algunos puntos de control:

with tf.Graph().as_default() as g:
  a = tf1.get_variable('a', shape=[], dtype=tf.float32, 
                       initializer=tf1.zeros_initializer())
  b = tf1.get_variable('b', shape=[], dtype=tf.float32, 
                       initializer=tf1.zeros_initializer())
  c = tf1.get_variable('scoped/c', shape=[], dtype=tf.float32, 
                       initializer=tf1.zeros_initializer())
  with tf1.Session() as sess:
    saver = tf1.train.Saver()
    sess.run(a.assign(1))
    sess.run(b.assign(2))
    sess.run(c.assign(3))
    saver.save(sess, 'tf1-ckpt')

print_checkpoint('tf1-ckpt')
Checkpoint at 'tf1-ckpt':
  (key='scoped/c', shape=[], dtype=float32, value=3.0)
  (key='a', shape=[], dtype=float32, value=1.0)
  (key='b', shape=[], dtype=float32, value=2.0)
a = tf.Variable(5.0, name='a')
b = tf.Variable(6.0, name='b')
with tf.name_scope('scoped'):
  c = tf.Variable(7.0, name='c')

ckpt = tf.train.Checkpoint(variables=[a, b, c])
save_path_v2 = ckpt.save('tf2-ckpt')
print_checkpoint(save_path_v2)
Checkpoint at 'tf2-ckpt-1':
  (key='variables/2/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=7.0)
  (key='variables/0/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=5.0)
  (key='_CHECKPOINTABLE_OBJECT_GRAPH', shape=[], dtype=string, value=b"\n!\n\r\x08\x01\x12\tvariables\n\x10\x08\x02\x12\x0csave_counter\n\x15\n\x05\x08\x03\x12\x010\n\x05\x08\x04\x12\x011\n\x05\x08\x05\x12\x012\nI\x12G\n\x0eVARIABLE_VALUE\x12\x0csave_counter\x1a'save_counter/.ATTRIBUTES/VARIABLE_VALUE\n=\x12;\n\x0eVARIABLE_VALUE\x12\x01a\x1a&variables/0/.ATTRIBUTES/VARIABLE_VALUE\n=\x12;\n\x0eVARIABLE_VALUE\x12\x01b\x1a&variables/1/.ATTRIBUTES/VARIABLE_VALUE\nD\x12B\n\x0eVARIABLE_VALUE\x12\x08scoped/c\x1a&variables/2/.ATTRIBUTES/VARIABLE_VALUE")
  (key='variables/1/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=6.0)
  (key='save_counter/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=int64, value=1)

Si observa las claves en tf2-ckpt , todas se refieren a las rutas de objetos de cada variable. Por ejemplo, la variable a es el primer elemento en la lista de variables , por lo que su clave se convierte en variables/0/... (no dude en ignorar la constante .ATTRIBUTES/VARIABLE_VALUE).

Una inspección más cercana del objeto Checkpoint a continuación:

a = tf.Variable(0.)
b = tf.Variable(0.)
c = tf.Variable(0.)
root = ckpt = tf.train.Checkpoint(variables=[a, b, c])
print("root type =", type(root).__name__)
print("root.variables =", root.variables)
print("root.variables[0] =", root.variables[0])
root type = Checkpoint
root.variables = ListWrapper([<tf.Variable 'Variable:0' shape=() dtype=float32, numpy=0.0>, <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=0.0>, <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=0.0>])
root.variables[0] = <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=0.0>

Intente experimentar con el siguiente fragmento y vea cómo cambian las claves del punto de control con la estructura del objeto:

module = tf.Module()
module.d = tf.Variable(0.)
test_ckpt = tf.train.Checkpoint(v={'a': a, 'b': b}, 
                                c=c,
                                module=module)
test_ckpt_path = test_ckpt.save('root-tf2-ckpt')
print_checkpoint(test_ckpt_path)
Checkpoint at 'root-tf2-ckpt-1':
  (key='v/a/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=0.0)
  (key='save_counter/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=int64, value=1)
  (key='v/b/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=0.0)
  (key='module/d/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=0.0)
  (key='_CHECKPOINTABLE_OBJECT_GRAPH', shape=[], dtype=string, value=b"\n,\n\x05\x08\x01\x12\x01c\n\n\x08\x02\x12\x06module\n\x05\x08\x03\x12\x01v\n\x10\x08\x04\x12\x0csave_counter\n:\x128\n\x0eVARIABLE_VALUE\x12\x08Variable\x1a\x1cc/.ATTRIBUTES/VARIABLE_VALUE\n\x07\n\x05\x08\x05\x12\x01d\n\x0e\n\x05\x08\x06\x12\x01a\n\x05\x08\x07\x12\x01b\nI\x12G\n\x0eVARIABLE_VALUE\x12\x0csave_counter\x1a'save_counter/.ATTRIBUTES/VARIABLE_VALUE\nA\x12?\n\x0eVARIABLE_VALUE\x12\x08Variable\x1a#module/d/.ATTRIBUTES/VARIABLE_VALUE\n<\x12:\n\x0eVARIABLE_VALUE\x12\x08Variable\x1a\x1ev/a/.ATTRIBUTES/VARIABLE_VALUE\n<\x12:\n\x0eVARIABLE_VALUE\x12\x08Variable\x1a\x1ev/b/.ATTRIBUTES/VARIABLE_VALUE")
  (key='c/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=0.0)

¿Por qué TF2 usa este mecanismo?

Debido a que ya no hay un gráfico global en TF2, los nombres de las variables no son confiables y pueden ser inconsistentes entre programas. TF2 fomenta el enfoque de modelado orientado a objetos donde las variables son propiedad de las capas y las capas son propiedad de un modelo:

variable = tf.Variable(...)
layer.variable_name = variable
model.layer_name = layer

Cómo mantener la compatibilidad del punto de control durante la migración del modelo

Un paso importante en el proceso de migración es asegurarse de que todas las variables se inicialicen con los valores correctos , lo que a su vez le permite validar que las operaciones/funciones están realizando los cálculos correctos. Para lograr esto, debe considerar la compatibilidad del punto de control entre los modelos en las distintas etapas de la migración. Esencialmente, esta sección responde a la pregunta, ¿cómo sigo usando el mismo punto de control mientras cambio el modelo ?

A continuación se muestran tres formas de mantener la compatibilidad de los puntos de control, en orden de flexibilidad creciente:

  1. El modelo tiene los mismos nombres de variables que antes.
  2. El modelo tiene diferentes nombres de variables y mantiene un mapa de asignación que asigna nombres de variables en el punto de control a los nuevos nombres.
  3. El modelo tiene diferentes nombres de variables y mantiene un objeto TF2 Checkpoint que almacena todas las variables.

Cuando los nombres de las variables coinciden

Título largo: Cómo reutilizar los puntos de control cuando los nombres de las variables coinciden.

Respuesta corta: puede cargar directamente el punto de control preexistente con tf1.train.Saver o tf.train.Checkpoint .


Si está utilizando tf.compat.v1.keras.utils.track_tf1_style_variables , se asegurará de que los nombres de las variables de su modelo sean los mismos que antes. También puede asegurarse manualmente de que los nombres de las variables coincidan.

Cuando los nombres de las variables coinciden en los modelos migrados, puede usar directamente tf.train.Checkpoint o tf.compat.v1.train.Saver para cargar el punto de control. Ambas API son compatibles con el modo gráfico y entusiasta, por lo que puede usarlas en cualquier etapa de la migración.

A continuación se muestran ejemplos del uso del mismo punto de control con diferentes modelos. Primero, guarde un punto de control TF1 con tf1.train.Saver :

with tf.Graph().as_default() as g:
  a = tf1.get_variable('a', shape=[], dtype=tf.float32, 
                       initializer=tf1.zeros_initializer())
  b = tf1.get_variable('b', shape=[], dtype=tf.float32, 
                       initializer=tf1.zeros_initializer())
  c = tf1.get_variable('scoped/c', shape=[], dtype=tf.float32, 
                       initializer=tf1.zeros_initializer())
  with tf1.Session() as sess:
    saver = tf1.train.Saver()
    sess.run(a.assign(1))
    sess.run(b.assign(2))
    sess.run(c.assign(3))
    save_path = saver.save(sess, 'tf1-ckpt')
print_checkpoint(save_path)
Checkpoint at 'tf1-ckpt':
  (key='scoped/c', shape=[], dtype=float32, value=3.0)
  (key='a', shape=[], dtype=float32, value=1.0)
  (key='b', shape=[], dtype=float32, value=2.0)

El siguiente ejemplo usa tf.compat.v1.Saver para cargar el punto de control mientras está en modo impaciente:

a = tf.Variable(0.0, name='a')
b = tf.Variable(0.0, name='b')
with tf.name_scope('scoped'):
  c = tf.Variable(0.0, name='c')

# With the removal of collections in TF2, you must pass in the list of variables
# to the Saver object:
saver = tf1.train.Saver(var_list=[a, b, c])
saver.restore(sess=None, save_path=save_path)
print(f"loaded values of [a, b, c]:  [{a.numpy()}, {b.numpy()}, {c.numpy()}]")

# Saving also works in eager (sess must be None).
path = saver.save(sess=None, save_path='tf1-ckpt-saved-in-eager')
print_checkpoint(path)
WARNING:tensorflow:Saver is deprecated, please switch to tf.train.Checkpoint or tf.keras.Model.save_weights for training checkpoints. When executing eagerly variables do not necessarily have unique names, and so the variable.name-based lookups Saver performs are error-prone.
INFO:tensorflow:Restoring parameters from tf1-ckpt
loaded values of [a, b, c]:  [1.0, 2.0, 3.0]
Checkpoint at 'tf1-ckpt-saved-in-eager':
  (key='scoped/c', shape=[], dtype=float32, value=3.0)
  (key='a', shape=[], dtype=float32, value=1.0)
  (key='b', shape=[], dtype=float32, value=2.0)

El siguiente fragmento carga el punto de control usando la API de TF2 tf.train.Checkpoint :

a = tf.Variable(0.0, name='a')
b = tf.Variable(0.0, name='b')
with tf.name_scope('scoped'):
  c = tf.Variable(0.0, name='c')

# Without the name_scope, name="scoped/c" works too:
c_2 = tf.Variable(0.0, name='scoped/c')

print("Variable names: ")
print(f"  a.name = {a.name}")
print(f"  b.name = {b.name}")
print(f"  c.name = {c.name}")
print(f"  c_2.name = {c_2.name}")

# Restore the values with tf.train.Checkpoint
ckpt = tf.train.Checkpoint(variables=[a, b, c, c_2])
ckpt.restore(save_path)
print(f"loaded values of [a, b, c, c_2]:  [{a.numpy()}, {b.numpy()}, {c.numpy()}, {c_2.numpy()}]")
Variable names: 
  a.name = a:0
  b.name = b:0
  c.name = scoped/c:0
  c_2.name = scoped/c:0
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/tracking/util.py:1345: NameBasedSaverStatus.__init__ (from tensorflow.python.training.tracking.util) is deprecated and will be removed in a future version.
Instructions for updating:
Restoring a name-based tf.train.Saver checkpoint using the object-based restore API. This mode uses global names to match variables, and so is somewhat fragile. It also adds new restore ops to the graph each time it is called when graph building. Prefer re-encoding training checkpoints in the object-based format: run save() on the object-based saver (the same one this message is coming from) and use that checkpoint in the future.
loaded values of [a, b, c, c_2]:  [1.0, 2.0, 3.0, 3.0]

Nombres de variables en TF2

  • Todas las variables todavía tienen un argumento de name que puede establecer.
  • Los modelos de Keras también toman un argumento de name que establecen como prefijo para sus variables.
  • La función v1.name_scope se puede utilizar para establecer prefijos de nombres de variables. Esto es muy diferente de tf.variable_scope . Solo afecta a los nombres y no realiza un seguimiento de las variables ni la reutilización.

El decorador tf.compat.v1.keras.utils.track_tf1_style_variables es una corrección que lo ayuda a mantener los nombres de las variables y la compatibilidad con el punto de control TF1, al mantener la semántica de nomenclatura y reutilización de tf.variable_scope y tf.compat.v1.get_variable sin cambios. Consulte la guía de asignación de modelos para obtener más información.

Nota 1: si está usando el shim, use las API de TF2 para cargar sus puntos de control (incluso cuando use puntos de control TF1 previamente entrenados).

Consulte la sección Punto de control de Keras .

Nota 2: Al migrar a tf.Variable desde get_variable :

Si su capa o módulo decorado con calzas consta de algunas variables (o capas/modelos de Keras) que usan tf.Variable en lugar de tf.compat.v1.get_variable y se adjuntan como propiedades/seguimiento de una manera orientada a objetos, pueden tener diferentes semántica de nomenclatura de variables en gráficos/sesiones de TF1.x frente a la ejecución ansiosa.

En resumen, es posible que los nombres no sean los esperados cuando se ejecutan en TF2.

Mantenimiento de mapas de asignación

Los mapas de asignación se usan comúnmente para transferir pesos entre modelos TF1 y también se pueden usar durante la migración de su modelo si cambian los nombres de las variables.

Puede usar estos mapas con tf.compat.v1.train.init_from_checkpoint , tf.compat.v1.train.Saver y tf.train.load_checkpoint para cargar pesos en modelos en los que los nombres de variables o alcances pueden haber cambiado.

Los ejemplos en esta sección usarán un punto de control previamente guardado:

print_checkpoint('tf1-ckpt')
Checkpoint at 'tf1-ckpt':
  (key='scoped/c', shape=[], dtype=float32, value=3.0)
  (key='a', shape=[], dtype=float32, value=1.0)
  (key='b', shape=[], dtype=float32, value=2.0)

Cargando con init_from_checkpoint

Se debe llamar a tf1.train.init_from_checkpoint mientras se está en un gráfico/sesión, porque coloca los valores en los inicializadores de variables en lugar de crear una operación de asignación.

Puede usar el argumento assignment_map para configurar cómo se cargan las variables. De la documentación:

El mapa de asignación admite la siguiente sintaxis:

  • 'checkpoint_scope_name/': 'scope_name/' - cargará todas las variables en el actual scope_name desde checkpoint_scope_name con nombres de tensores coincidentes.
  • 'checkpoint_scope_name/some_other_variable': 'scope_name/variable_name' : inicializará scope_name/variable_name variable_name desde checkpoint_scope_name/some_other_variable .
  • 'scope_variable_name': variable : se inicializará el objeto tf.Variable dado con el tensor 'scope_variable_name' desde el punto de control.
  • 'scope_variable_name': list(variable) - inicializará la lista de variables particionadas con el tensor 'scope_variable_name' desde el punto de control.
  • '/': 'scope_name/' - cargará todas las variables en el scope_name actual desde la raíz del punto de control (por ejemplo, sin alcance).
# Restoring with tf1.train.init_from_checkpoint:

# A new model with a different scope for the variables.
with tf.Graph().as_default() as g:
  with tf1.variable_scope('new_scope'):
    a = tf1.get_variable('a', shape=[], dtype=tf.float32, 
                        initializer=tf1.zeros_initializer())
    b = tf1.get_variable('b', shape=[], dtype=tf.float32, 
                        initializer=tf1.zeros_initializer())
    c = tf1.get_variable('scoped/c', shape=[], dtype=tf.float32, 
                        initializer=tf1.zeros_initializer())
  with tf1.Session() as sess:
    # The assignment map will remap all variables in the checkpoint to the
    # new scope:
    tf1.train.init_from_checkpoint(
        'tf1-ckpt',
        assignment_map={'/': 'new_scope/'})
    # `init_from_checkpoint` adds the initializers to these variables.
    # Use `sess.run` to run these initializers.
    sess.run(tf1.global_variables_initializer())

    print("Restored [a, b, c]: ", sess.run([a, b, c]))
Restored [a, b, c]:  [1.0, 2.0, 3.0]

Cargando con tf1.train.Saver

A diferencia de init_from_checkpoint , tf.compat.v1.train.Saver se ejecuta en modo gráfico y ansioso. El argumento var_list acepta opcionalmente un diccionario, excepto que debe asignar nombres de variables al objeto tf.Variable .

# Restoring with tf1.train.Saver (works in both graph and eager):

# A new model with a different scope for the variables.
with tf1.variable_scope('new_scope'):
  a = tf1.get_variable('a', shape=[], dtype=tf.float32, 
                      initializer=tf1.zeros_initializer())
  b = tf1.get_variable('b', shape=[], dtype=tf.float32, 
                      initializer=tf1.zeros_initializer())
  c = tf1.get_variable('scoped/c', shape=[], dtype=tf.float32, 
                        initializer=tf1.zeros_initializer())
# Initialize the saver with a dictionary with the original variable names:
saver = tf1.train.Saver({'a': a, 'b': b, 'scoped/c': c})
saver.restore(sess=None, save_path='tf1-ckpt')
print("Restored [a, b, c]: ", [a.numpy(), b.numpy(), c.numpy()])
WARNING:tensorflow:Saver is deprecated, please switch to tf.train.Checkpoint or tf.keras.Model.save_weights for training checkpoints. When executing eagerly variables do not necessarily have unique names, and so the variable.name-based lookups Saver performs are error-prone.
INFO:tensorflow:Restoring parameters from tf1-ckpt
Restored [a, b, c]:  [1.0, 2.0, 3.0]

Cargando con tf.train.load_checkpoint

Esta opción es para usted si necesita un control preciso sobre los valores de las variables. Una vez más, esto funciona tanto en el modo gráfico como en el ansioso.

# Restoring with tf.train.load_checkpoint (works in both graph and eager):

# A new model with a different scope for the variables.
with tf.Graph().as_default() as g:
  with tf1.variable_scope('new_scope'):
    a = tf1.get_variable('a', shape=[], dtype=tf.float32, 
                        initializer=tf1.zeros_initializer())
    b = tf1.get_variable('b', shape=[], dtype=tf.float32, 
                        initializer=tf1.zeros_initializer())
    c = tf1.get_variable('scoped/c', shape=[], dtype=tf.float32, 
                        initializer=tf1.zeros_initializer())
  with tf1.Session() as sess:
    # It may be easier writing a loop if your model has a lot of variables.
    reader = tf.train.load_checkpoint('tf1-ckpt')
    sess.run(a.assign(reader.get_tensor('a')))
    sess.run(b.assign(reader.get_tensor('b')))
    sess.run(c.assign(reader.get_tensor('scoped/c')))
    print("Restored [a, b, c]: ", sess.run([a, b, c]))
Restored [a, b, c]:  [1.0, 2.0, 3.0]

Mantenimiento de un objeto TF2 Checkpoint

Si los nombres de las variables y el alcance pueden cambiar mucho durante la migración, utilice los puntos de control tf.train.Checkpoint y TF2. TF2 usa la estructura de objetos en lugar de nombres de variables (más detalles en Cambios de TF1 a TF2 ).

En resumen, al crear un tf.train.Checkpoint para guardar o restaurar puntos de control, asegúrese de que utiliza el mismo orden (para listas) y claves (para diccionarios y argumentos de palabras clave para el inicializador de punto de Checkpoint ). Algunos ejemplos de compatibilidad de puntos de control:

ckpt = tf.train.Checkpoint(foo=[var_a, var_b])

# compatible with ckpt
tf.train.Checkpoint(foo=[var_a, var_b])

# not compatible with ckpt
tf.train.Checkpoint(foo=[var_b, var_a])
tf.train.Checkpoint(bar=[var_a, var_b])

Los ejemplos de código a continuación muestran cómo usar el "mismo" tf.train.Checkpoint para cargar variables con diferentes nombres. Primero, guarde un punto de control TF2:

with tf.Graph().as_default() as g:
  a = tf1.get_variable('a', shape=[], dtype=tf.float32, 
                       initializer=tf1.constant_initializer(1))
  b = tf1.get_variable('b', shape=[], dtype=tf.float32, 
                       initializer=tf1.constant_initializer(2))
  with tf1.variable_scope('scoped'):
    c = tf1.get_variable('c', shape=[], dtype=tf.float32, 
                        initializer=tf1.constant_initializer(3))
  with tf1.Session() as sess:
    sess.run(tf1.global_variables_initializer())
    print("[a, b, c]: ", sess.run([a, b, c]))

    # Save a TF2 checkpoint
    ckpt = tf.train.Checkpoint(unscoped=[a, b], scoped=[c])
    tf2_ckpt_path = ckpt.save('tf2-ckpt')
    print_checkpoint(tf2_ckpt_path)
[a, b, c]:  [1.0, 2.0, 3.0]
Checkpoint at 'tf2-ckpt-1':
  (key='unscoped/1/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=2.0)
  (key='unscoped/0/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=1.0)
  (key='_CHECKPOINTABLE_OBJECT_GRAPH', shape=[], dtype=string, value=b"\n,\n\n\x08\x01\x12\x06scoped\n\x0c\x08\x02\x12\x08unscoped\n\x10\x08\x03\x12\x0csave_counter\n\x07\n\x05\x08\x04\x12\x010\n\x0e\n\x05\x08\x05\x12\x010\n\x05\x08\x06\x12\x011\nI\x12G\n\x0eVARIABLE_VALUE\x12\x0csave_counter\x1a'save_counter/.ATTRIBUTES/VARIABLE_VALUE\nA\x12?\n\x0eVARIABLE_VALUE\x12\x08scoped/c\x1a#scoped/0/.ATTRIBUTES/VARIABLE_VALUE\n<\x12:\n\x0eVARIABLE_VALUE\x12\x01a\x1a%unscoped/0/.ATTRIBUTES/VARIABLE_VALUE\n<\x12:\n\x0eVARIABLE_VALUE\x12\x01b\x1a%unscoped/1/.ATTRIBUTES/VARIABLE_VALUE")
  (key='scoped/0/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=3.0)
  (key='save_counter/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=int64, value=1)

Puede seguir usando tf.train.Checkpoint incluso si cambian los nombres de variable/alcance:

with tf.Graph().as_default() as g:
  a = tf1.get_variable('a_different_name', shape=[], dtype=tf.float32, 
                       initializer=tf1.zeros_initializer())
  b = tf1.get_variable('b_different_name', shape=[], dtype=tf.float32, 
                       initializer=tf1.zeros_initializer())
  with tf1.variable_scope('different_scope'):
    c = tf1.get_variable('c', shape=[], dtype=tf.float32, 
                        initializer=tf1.zeros_initializer())
  with tf1.Session() as sess:
    sess.run(tf1.global_variables_initializer())
    print("Initialized [a, b, c]: ", sess.run([a, b, c]))

    ckpt = tf.train.Checkpoint(unscoped=[a, b], scoped=[c])
    # `assert_consumed` validates that all checkpoint objects are restored from
    # the checkpoint. `run_restore_ops` is required when running in a TF1
    # session.
    ckpt.restore(tf2_ckpt_path).assert_consumed().run_restore_ops()

    # Removing `assert_consumed` is fine if you want to skip the validation.
    # ckpt.restore(tf2_ckpt_path).run_restore_ops()

    print("Restored [a, b, c]: ", sess.run([a, b, c]))
Initialized [a, b, c]:  [0.0, 0.0, 0.0]
Restored [a, b, c]:  [1.0, 2.0, 3.0]

Y en modo ansioso:

a = tf.Variable(0.)
b = tf.Variable(0.)
c = tf.Variable(0.)
print("Initialized [a, b, c]: ", [a.numpy(), b.numpy(), c.numpy()])

# The keys "scoped" and "unscoped" are no longer relevant, but are used to
# maintain compatibility with the saved checkpoints.
ckpt = tf.train.Checkpoint(unscoped=[a, b], scoped=[c])

ckpt.restore(tf2_ckpt_path).assert_consumed().run_restore_ops()
print("Restored [a, b, c]: ", [a.numpy(), b.numpy(), c.numpy()])
Initialized [a, b, c]:  [0.0, 0.0, 0.0]
Restored [a, b, c]:  [1.0, 2.0, 3.0]

Puntos de control TF2 en Estimator

Las secciones anteriores describen cómo mantener la compatibilidad del punto de control mientras migra su modelo. Estos conceptos también se aplican a los modelos Estimator, aunque la forma en que se guarda/carga el punto de control es ligeramente diferente. A medida que migre su modelo Estimator para usar las API de TF2, es posible que desee cambiar de los puntos de control TF1 a TF2 mientras el modelo todavía usa el estimador . Esta sección muestra cómo hacerlo.

tf.estimator.Estimator y MonitoredSession tienen un mecanismo de guardado llamado scaffold , un objeto tf.compat.v1.train.Scaffold . Scaffold puede contener un tf1.train.Saver o tf.train.Checkpoint , que permite a Estimator y MonitoredSession guardar puntos de control de estilo TF1 o TF2.

# A model_fn that saves a TF1 checkpoint
def model_fn_tf1_ckpt(features, labels, mode):
  # This model adds 2 to the variable `v` in every train step.
  train_step = tf1.train.get_or_create_global_step()
  v = tf1.get_variable('var', shape=[], dtype=tf.float32, 
                       initializer=tf1.constant_initializer(0))
  return tf.estimator.EstimatorSpec(
      mode,
      predictions=v,
      train_op=tf.group(v.assign_add(2), train_step.assign_add(1)),
      loss=tf.constant(1.),
      scaffold=None
  )

!rm -rf est-tf1
est = tf.estimator.Estimator(model_fn_tf1_ckpt, 'est-tf1')

def train_fn():
  return tf.data.Dataset.from_tensor_slices(([1,2,3], [4,5,6]))
est.train(train_fn, steps=1)

latest_checkpoint = tf.train.latest_checkpoint('est-tf1')
print_checkpoint(latest_checkpoint)
INFO:tensorflow:Using default config.
INFO:tensorflow:Using config: {'_model_dir': 'est-tf1', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:401: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into est-tf1/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 1.0, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1...
INFO:tensorflow:Saving checkpoints for 1 into est-tf1/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1...
INFO:tensorflow:Loss for final step: 1.0.
Checkpoint at 'est-tf1/model.ckpt-1':
  (key='var', shape=[], dtype=float32, value=2.0)
  (key='global_step', shape=[], dtype=int64, value=1)
# A model_fn that saves a TF2 checkpoint
def model_fn_tf2_ckpt(features, labels, mode):
  # This model adds 2 to the variable `v` in every train step.
  train_step = tf1.train.get_or_create_global_step()
  v = tf1.get_variable('var', shape=[], dtype=tf.float32, 
                       initializer=tf1.constant_initializer(0))
  ckpt = tf.train.Checkpoint(var_list={'var': v}, step=train_step)
  return tf.estimator.EstimatorSpec(
      mode,
      predictions=v,
      train_op=tf.group(v.assign_add(2), train_step.assign_add(1)),
      loss=tf.constant(1.),
      scaffold=tf1.train.Scaffold(saver=ckpt)
  )

!rm -rf est-tf2
est = tf.estimator.Estimator(model_fn_tf2_ckpt, 'est-tf2',
                             warm_start_from='est-tf1')

def train_fn():
  return tf.data.Dataset.from_tensor_slices(([1,2,3], [4,5,6]))
est.train(train_fn, steps=1)

latest_checkpoint = tf.train.latest_checkpoint('est-tf2')
print_checkpoint(latest_checkpoint)  

assert est.get_variable_value('var_list/var/.ATTRIBUTES/VARIABLE_VALUE') == 4
INFO:tensorflow:Using default config.
INFO:tensorflow:Using config: {'_model_dir': 'est-tf2', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Warm-starting with WarmStartSettings: WarmStartSettings(ckpt_to_initialize_from='est-tf1', vars_to_warm_start='.*', var_name_to_vocab_info={}, var_name_to_prev_var_name={})
INFO:tensorflow:Warm-starting from: est-tf1
INFO:tensorflow:Warm-starting variables only in TRAINABLE_VARIABLES.
INFO:tensorflow:Warm-started 1 variables.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into est-tf2/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 1.0, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1...
INFO:tensorflow:Saving checkpoints for 1 into est-tf2/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1...
INFO:tensorflow:Loss for final step: 1.0.
Checkpoint at 'est-tf2/model.ckpt-1':
  (key='var_list/var/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=4.0)
  (key='_CHECKPOINTABLE_OBJECT_GRAPH', shape=[], dtype=string, value=b"\n\x18\n\x08\x08\x01\x12\x04step\n\x0c\x08\x02\x12\x08var_list\n@\x12>\n\x0eVARIABLE_VALUE\x12\x0bglobal_step\x1a\x1fstep/.ATTRIBUTES/VARIABLE_VALUE\n\t\n\x07\x08\x03\x12\x03var\n@\x12>\n\x0eVARIABLE_VALUE\x12\x03var\x1a'var_list/var/.ATTRIBUTES/VARIABLE_VALUE")
  (key='step/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=int64, value=1)

El valor final de v debe ser 16 , después de iniciarse en caliente desde est-tf1 , luego entrenarse para 5 pasos adicionales. El valor del paso de tren no se transfiere desde el punto de control warm_start .

Puntos de control de Keras

Los modelos construidos con Keras todavía usan tf1.train.Saver y tf.train.Checkpoint para cargar pesos preexistentes. Cuando su modelo esté completamente migrado, cambie a model.save_weights y model.load_weights , especialmente si está usando la devolución de llamada de ModelCheckpoint durante el entrenamiento.

Algunas cosas que debe saber sobre los puntos de control y Keras:

Inicialización vs Construcción

Los modelos y capas de Keras deben pasar por dos pasos antes de crearse por completo. Primero está la inicialización del objeto Python: layer = tf.keras.layers.Dense(x) . El segundo es el paso de construcción , en el que la mayoría de los pesos se crean realmente: layer.build(input_shape) . También puede crear un modelo llamándolo o ejecutando un único paso train , eval o predict (solo la primera vez).

Si encuentra que model.load_weights(path).assert_consumed() un error, es probable que el modelo o las capas no se hayan creado.

Keras usa puntos de control TF2

tf.train.Checkpoint(model).write es equivalente a model.save_weights . Lo mismo con tf.train.Checkpoint(model).read .read y model.load_weights . Tenga en cuenta que Checkpoint(model) != Checkpoint(model=model) .

Los puntos de control de TF2 funcionan con el paso build() de Keras

tf.train.Checkpoint.restore tiene un mecanismo llamado restauración diferida que permite que los objetos tf.Module y Keras almacenen valores de variables si la variable aún no se ha creado. Esto permite que los modelos inicializados carguen pesos y se construyan después.

m = YourKerasModel()
status = m.load_weights(path)

# This call builds the model. The variables are created with the restored
# values.
m.predict(inputs)

status.assert_consumed()

Debido a este mecanismo, le recomendamos enfáticamente que utilice las API de carga de puntos de control de TF2 con modelos de Keras (incluso cuando restaure puntos de control de TF1 preexistentes en las correcciones de compatibilidad del mapeo de modelos ). Ver más en la guía de puntos de control .

Fragmentos de código

Los fragmentos a continuación muestran la compatibilidad de la versión TF1/TF2 en las API de guardado de puntos de control.

Guardar un punto de control TF1 en TF2

a = tf.Variable(1.0, name='a')
b = tf.Variable(2.0, name='b')
with tf.name_scope('scoped'):
  c = tf.Variable(3.0, name='c')

saver = tf1.train.Saver(var_list=[a, b, c])
path = saver.save(sess=None, save_path='tf1-ckpt-saved-in-eager')
print_checkpoint(path)
WARNING:tensorflow:Saver is deprecated, please switch to tf.train.Checkpoint or tf.keras.Model.save_weights for training checkpoints. When executing eagerly variables do not necessarily have unique names, and so the variable.name-based lookups Saver performs are error-prone.
Checkpoint at 'tf1-ckpt-saved-in-eager':
  (key='scoped/c', shape=[], dtype=float32, value=3.0)
  (key='a', shape=[], dtype=float32, value=1.0)
  (key='b', shape=[], dtype=float32, value=2.0)

Cargue un punto de control TF1 en TF2

a = tf.Variable(0., name='a')
b = tf.Variable(0., name='b')
with tf.name_scope('scoped'):
  c = tf.Variable(0., name='c')
print("Initialized [a, b, c]: ", [a.numpy(), b.numpy(), c.numpy()])
saver = tf1.train.Saver(var_list=[a, b, c])
saver.restore(sess=None, save_path='tf1-ckpt-saved-in-eager')
print("Restored [a, b, c]: ", [a.numpy(), b.numpy(), c.numpy()])
Initialized [a, b, c]:  [0.0, 0.0, 0.0]
WARNING:tensorflow:Saver is deprecated, please switch to tf.train.Checkpoint or tf.keras.Model.save_weights for training checkpoints. When executing eagerly variables do not necessarily have unique names, and so the variable.name-based lookups Saver performs are error-prone.
INFO:tensorflow:Restoring parameters from tf1-ckpt-saved-in-eager
Restored [a, b, c]:  [1.0, 2.0, 3.0]

Guardar un punto de control TF2 en TF1

with tf.Graph().as_default() as g:
  a = tf1.get_variable('a', shape=[], dtype=tf.float32, 
                       initializer=tf1.constant_initializer(1))
  b = tf1.get_variable('b', shape=[], dtype=tf.float32, 
                       initializer=tf1.constant_initializer(2))
  with tf1.variable_scope('scoped'):
    c = tf1.get_variable('c', shape=[], dtype=tf.float32, 
                        initializer=tf1.constant_initializer(3))
  with tf1.Session() as sess:
    sess.run(tf1.global_variables_initializer())
    ckpt = tf.train.Checkpoint(
        var_list={v.name.split(':')[0]: v for v in tf1.global_variables()})
    tf2_in_tf1_path = ckpt.save('tf2-ckpt-saved-in-session')
    print_checkpoint(tf2_in_tf1_path)
Checkpoint at 'tf2-ckpt-saved-in-session-1':
  (key='var_list/scoped.Sc/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=3.0)
  (key='var_list/b/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=2.0)
  (key='var_list/a/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=1.0)
  (key='_CHECKPOINTABLE_OBJECT_GRAPH', shape=[], dtype=string, value=b"\n \n\x0c\x08\x01\x12\x08var_list\n\x10\x08\x02\x12\x0csave_counter\n\x1c\n\x05\x08\x03\x12\x01a\n\x05\x08\x04\x12\x01b\n\x0c\x08\x05\x12\x08scoped/c\nI\x12G\n\x0eVARIABLE_VALUE\x12\x0csave_counter\x1a'save_counter/.ATTRIBUTES/VARIABLE_VALUE\n<\x12:\n\x0eVARIABLE_VALUE\x12\x01a\x1a%var_list/a/.ATTRIBUTES/VARIABLE_VALUE\n<\x12:\n\x0eVARIABLE_VALUE\x12\x01b\x1a%var_list/b/.ATTRIBUTES/VARIABLE_VALUE\nK\x12I\n\x0eVARIABLE_VALUE\x12\x08scoped/c\x1a-var_list/scoped.Sc/.ATTRIBUTES/VARIABLE_VALUE")
  (key='save_counter/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=int64, value=1)

Cargue un punto de control TF2 en TF1

with tf.Graph().as_default() as g:
  a = tf1.get_variable('a', shape=[], dtype=tf.float32, 
                       initializer=tf1.constant_initializer(0))
  b = tf1.get_variable('b', shape=[], dtype=tf.float32, 
                       initializer=tf1.constant_initializer(0))
  with tf1.variable_scope('scoped'):
    c = tf1.get_variable('c', shape=[], dtype=tf.float32, 
                        initializer=tf1.constant_initializer(0))
  with tf1.Session() as sess:
    sess.run(tf1.global_variables_initializer())
    print("Initialized [a, b, c]: ", sess.run([a, b, c]))
    ckpt = tf.train.Checkpoint(
        var_list={v.name.split(':')[0]: v for v in tf1.global_variables()})
    ckpt.restore('tf2-ckpt-saved-in-session-1').run_restore_ops()
    print("Restored [a, b, c]: ", sess.run([a, b, c]))
Initialized [a, b, c]:  [0.0, 0.0, 0.0]
Restored [a, b, c]:  [1.0, 2.0, 3.0]

Conversión de punto de control

Puede convertir puntos de control entre TF1 y TF2 cargando y volviendo a guardar los puntos de control. Una alternativa es tf.train.load_checkpoint , que se muestra en el código a continuación.

Convierta el punto de control TF1 en TF2

def convert_tf1_to_tf2(checkpoint_path, output_prefix):
  """Converts a TF1 checkpoint to TF2.

  To load the converted checkpoint, you must build a dictionary that maps
  variable names to variable objects.
  ```
  ckpt = tf.train.Checkpoint(vars={name: variable})  
  ckpt.restore(converted_ckpt_path)

    ```

    Args:
      checkpoint_path: Path to the TF1 checkpoint.
      output_prefix: Path prefix to the converted checkpoint.

    Returns:
      Path to the converted checkpoint.
    """
    vars = {}
    reader = tf.train.load_checkpoint(checkpoint_path)
    dtypes = reader.get_variable_to_dtype_map()
    for key in dtypes.keys():
      vars[key] = tf.Variable(reader.get_tensor(key))
    return tf.train.Checkpoint(vars=vars).save(output_prefix)
  ```

Convert the checkpoint saved in the snippet `Save a TF1 checkpoint in TF2`:


```python
# Make sure to run the snippet in `Save a TF1 checkpoint in TF2`.
print_checkpoint('tf1-ckpt-saved-in-eager')
converted_path = convert_tf1_to_tf2('tf1-ckpt-saved-in-eager', 
                                     'converted-tf1-to-tf2')
print("\n[Converted]")
print_checkpoint(converted_path)

# Try loading the converted checkpoint.
a = tf.Variable(0.)
b = tf.Variable(0.)
c = tf.Variable(0.)
ckpt = tf.train.Checkpoint(vars={'a': a, 'b': b, 'scoped/c': c})
ckpt.restore(converted_path).assert_consumed()
print("\nRestored [a, b, c]: ", [a.numpy(), b.numpy(), c.numpy()])
Checkpoint at 'tf1-ckpt-saved-in-eager':
  (key='scoped/c', shape=[], dtype=float32, value=3.0)
  (key='a', shape=[], dtype=float32, value=1.0)
  (key='b', shape=[], dtype=float32, value=2.0)

[Converted]
Checkpoint at 'converted-tf1-to-tf2-1':
  (key='vars/scoped.Sc/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=3.0)
  (key='vars/b/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=2.0)
  (key='vars/a/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=1.0)
  (key='_CHECKPOINTABLE_OBJECT_GRAPH', shape=[], dtype=string, value=b"\n\x1c\n\x08\x08\x01\x12\x04vars\n\x10\x08\x02\x12\x0csave_counter\n\x1c\n\x0c\x08\x03\x12\x08scoped/c\n\x05\x08\x04\x12\x01a\n\x05\x08\x05\x12\x01b\nI\x12G\n\x0eVARIABLE_VALUE\x12\x0csave_counter\x1a'save_counter/.ATTRIBUTES/VARIABLE_VALUE\nG\x12E\n\x0eVARIABLE_VALUE\x12\x08Variable\x1a)vars/scoped.Sc/.ATTRIBUTES/VARIABLE_VALUE\n?\x12=\n\x0eVARIABLE_VALUE\x12\x08Variable\x1a!vars/a/.ATTRIBUTES/VARIABLE_VALUE\n?\x12=\n\x0eVARIABLE_VALUE\x12\x08Variable\x1a!vars/b/.ATTRIBUTES/VARIABLE_VALUE")
  (key='save_counter/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=int64, value=1)

Restored [a, b, c]:  [1.0, 2.0, 3.0]

Convierta el punto de control TF2 en TF1

def convert_tf2_to_tf1(checkpoint_path, output_prefix):
  """Converts a TF2 checkpoint to TF1.

  The checkpoint must be saved using a 
  `tf.train.Checkpoint(var_list={name: variable})`

  To load the converted checkpoint with `tf.compat.v1.Saver`:
  ```
  saver = tf.compat.v1.train.Saver(var_list={name: variable}) 

  # An alternative, if the variable names match the keys:
  saver = tf.compat.v1.train.Saver(var_list=[variables]) 
  saver.restore(sess, output_path)

    ```
    """
    vars = {}
    reader = tf.train.load_checkpoint(checkpoint_path)
    dtypes = reader.get_variable_to_dtype_map()
    for key in dtypes.keys():
      # Get the "name" from the 
      if key.startswith('var_list/'):
        var_name = key.split('/')[1]
        # TF2 checkpoint keys use '/', so if they appear in the user-defined name,
        # they are escaped to '.S'.
        var_name = var_name.replace('.S', '/')
        vars[var_name] = tf.Variable(reader.get_tensor(key))

    return tf1.train.Saver(var_list=vars).save(sess=None, save_path=output_prefix)
  ```

Convert the checkpoint saved in the snippet `Save a TF2 checkpoint in TF1`:


```python
# Make sure to run the snippet in `Save a TF2 checkpoint in TF1`.
print_checkpoint('tf2-ckpt-saved-in-session-1')
converted_path = convert_tf2_to_tf1('tf2-ckpt-saved-in-session-1',
                                    'converted-tf2-to-tf1')
print("\n[Converted]")
print_checkpoint(converted_path)

# Try loading the converted checkpoint.
with tf.Graph().as_default() as g:
  a = tf1.get_variable('a', shape=[], dtype=tf.float32, 
                       initializer=tf1.constant_initializer(0))
  b = tf1.get_variable('b', shape=[], dtype=tf.float32, 
                       initializer=tf1.constant_initializer(0))
  with tf1.variable_scope('scoped'):
    c = tf1.get_variable('c', shape=[], dtype=tf.float32, 
                        initializer=tf1.constant_initializer(0))
  with tf1.Session() as sess:
    saver = tf1.train.Saver([a, b, c])
    saver.restore(sess, converted_path)
    print("\nRestored [a, b, c]: ", sess.run([a, b, c]))
Checkpoint at 'tf2-ckpt-saved-in-session-1':
  (key='var_list/scoped.Sc/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=3.0)
  (key='var_list/b/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=2.0)
  (key='var_list/a/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=float32, value=1.0)
  (key='_CHECKPOINTABLE_OBJECT_GRAPH', shape=[], dtype=string, value=b"\n \n\x0c\x08\x01\x12\x08var_list\n\x10\x08\x02\x12\x0csave_counter\n\x1c\n\x05\x08\x03\x12\x01a\n\x05\x08\x04\x12\x01b\n\x0c\x08\x05\x12\x08scoped/c\nI\x12G\n\x0eVARIABLE_VALUE\x12\x0csave_counter\x1a'save_counter/.ATTRIBUTES/VARIABLE_VALUE\n<\x12:\n\x0eVARIABLE_VALUE\x12\x01a\x1a%var_list/a/.ATTRIBUTES/VARIABLE_VALUE\n<\x12:\n\x0eVARIABLE_VALUE\x12\x01b\x1a%var_list/b/.ATTRIBUTES/VARIABLE_VALUE\nK\x12I\n\x0eVARIABLE_VALUE\x12\x08scoped/c\x1a-var_list/scoped.Sc/.ATTRIBUTES/VARIABLE_VALUE")
  (key='save_counter/.ATTRIBUTES/VARIABLE_VALUE', shape=[], dtype=int64, value=1)
WARNING:tensorflow:Saver is deprecated, please switch to tf.train.Checkpoint or tf.keras.Model.save_weights for training checkpoints. When executing eagerly variables do not necessarily have unique names, and so the variable.name-based lookups Saver performs are error-prone.

[Converted]
Checkpoint at 'converted-tf2-to-tf1':
  (key='scoped/c', shape=[], dtype=float32, value=3.0)
  (key='a', shape=[], dtype=float32, value=1.0)
  (key='b', shape=[], dtype=float32, value=2.0)
INFO:tensorflow:Restoring parameters from converted-tf2-to-tf1

Restored [a, b, c]:  [1.0, 2.0, 3.0]