הצג באתר TensorFlow.org | הפעל בגוגל קולאב | צפה במקור ב-GitHub | הורד מחברת |
סובלנות תקלות מתייחסת למנגנון של שמירת מצבים של אובייקטים שניתנים למעקב, כגון פרמטרים ומודלים. זה מאפשר לך לשחזר אותם במקרה של כשל בתוכנית/מכונה במהלך האימון.
מדריך זה מדגים תחילה כיצד להוסיף סובלנות תקלות לאימון עם tf.estimator.Estimator
ב-TensorFlow 1 על ידי ציון חיסכון מטרי עם tf.estimator.RunConfig
. לאחר מכן, תלמד כיצד ליישם סובלנות תקלות לאימון ב-Tensorflow 2 בשתי דרכים:
- אם אתה משתמש בממשק ה-API של Keras
Model.fit
, אתה יכול להעביר אליו את ההתקשרות חזרהtf.keras.callbacks.BackupAndRestore
. - אם אתה משתמש בלולאת אימון מותאמת אישית (עם
tf.GradientTape
), תוכל לשמור נקודות ביקורת באופן שרירותי באמצעות ממשקי ה-API שלtf.train.Checkpoint
ו-tf.train.CheckpointManager
.
שתי השיטות הללו יגבו וישחזרו את מצבי האימון בקובצי המחסום .
להכין
import tensorflow.compat.v1 as tf1
import tensorflow as tf
import numpy as np
import tempfile
import time
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
TensorFlow 1: שמור נקודות ביקורת עם tf.estimator.RunConfig
ב-TensorFlow 1, אתה יכול להגדיר tf.estimator
לשמור נקודות ביקורת בכל שלב על ידי הגדרת tf.estimator.RunConfig
.
בדוגמה זו, התחל בכתיבת הוק שזורק באופן מלאכותי שגיאה במהלך המחסום החמישי:
class InterruptHook(tf1.train.SessionRunHook):
# A hook for artificially interrupting training.
def begin(self):
self._step = -1
def before_run(self, run_context):
self._step += 1
def after_run(self, run_context, run_values):
if self._step == 5:
raise RuntimeError('Interruption')
לאחר מכן, הגדר את tf.estimator.Estimator
לשמור כל נקודת ביקורת ולהשתמש במערך הנתונים של MNIST:
feature_columns = [tf1.feature_column.numeric_column("x", shape=[28, 28])]
config = tf1.estimator.RunConfig(save_summary_steps=1,
save_checkpoints_steps=1)
path = tempfile.mkdtemp()
classifier = tf1.estimator.DNNClassifier(
feature_columns=feature_columns,
hidden_units=[256, 32],
optimizer=tf1.train.AdamOptimizer(0.001),
n_classes=10,
dropout=0.2,
model_dir=path,
config = config
)
train_input_fn = tf1.estimator.inputs.numpy_input_fn(
x={"x": x_train},
y=y_train.astype(np.int32),
num_epochs=10,
batch_size=50,
shuffle=True,
)
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpv15yxr9g', '_tf_random_seed': None, '_save_summary_steps': 1, '_save_checkpoints_steps': 1, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} WARNING:tensorflow:From /tmp/ipykernel_20837/314197976.py:17: The name tf.estimator.inputs is deprecated. Please use tf.compat.v1.estimator.inputs instead. WARNING:tensorflow:From /tmp/ipykernel_20837/314197976.py:17: The name tf.estimator.inputs.numpy_input_fn is deprecated. Please use tf.compat.v1.estimator.inputs.numpy_input_fn instead.
התחל לאמן את הדגם. חריג מלאכותי יועלה על ידי הוו שהגדרת קודם לכן.
try:
classifier.train(input_fn=train_input_fn,
hooks=[InterruptHook()],
max_steps=10)
except Exception as e:
print(f'{type(e).__name__}:{e}')
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:397: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_queue_runner.py:65: QueueRunner.__init__ (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_functions.py:491: add_queue_runner (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/monitored_session.py:914: start_queue_runners (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpv15yxr9g/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1... INFO:tensorflow:Saving checkpoints for 1 into /tmp/tmpv15yxr9g/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1... INFO:tensorflow:loss = 118.92192, step = 0 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 2... INFO:tensorflow:Saving checkpoints for 2 into /tmp/tmpv15yxr9g/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 2... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 3... INFO:tensorflow:Saving checkpoints for 3 into /tmp/tmpv15yxr9g/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 3... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 4... INFO:tensorflow:Saving checkpoints for 4 into /tmp/tmpv15yxr9g/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 4... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 5... INFO:tensorflow:Saving checkpoints for 5 into /tmp/tmpv15yxr9g/model.ckpt. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/saver.py:1054: remove_checkpoint (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version. Instructions for updating: Use standard file APIs to delete files with this prefix. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 5... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 6... INFO:tensorflow:Saving checkpoints for 6 into /tmp/tmpv15yxr9g/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 6... RuntimeError:Interruption
בנה מחדש את tf.estimator.Estimator
באמצעות המחסום האחרון שנשמר והמשך אימון:
classifier = tf1.estimator.DNNClassifier(
feature_columns=feature_columns,
hidden_units=[256, 32],
optimizer=tf1.train.AdamOptimizer(0.001),
n_classes=10,
dropout=0.2,
model_dir=path,
config = config
)
classifier.train(input_fn=train_input_fn,
max_steps = 10)
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpv15yxr9g', '_tf_random_seed': None, '_save_summary_steps': 1, '_save_checkpoints_steps': 1, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpv15yxr9g/model.ckpt-6 WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/saver.py:1161: get_checkpoint_mtimes (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version. Instructions for updating: Use standard file utilities to get mtimes. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 6... INFO:tensorflow:Saving checkpoints for 6 into /tmp/tmpv15yxr9g/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 6... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 7... INFO:tensorflow:Saving checkpoints for 7 into /tmp/tmpv15yxr9g/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 7... INFO:tensorflow:loss = 105.44863, step = 6 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 8... INFO:tensorflow:Saving checkpoints for 8 into /tmp/tmpv15yxr9g/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 8... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 9... INFO:tensorflow:Saving checkpoints for 9 into /tmp/tmpv15yxr9g/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 9... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 10... INFO:tensorflow:Saving checkpoints for 10 into /tmp/tmpv15yxr9g/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 10... INFO:tensorflow:Loss for final step: 100.47882. <tensorflow_estimator.python.estimator.canned.dnn.DNNClassifier at 0x7fcfe8165150>
TensorFlow 2: גיבוי ושחזור באמצעות callback ו-Model.fit
ב-TensorFlow 2, אם אתה משתמש בממשק ה-API של Keras Model.fit
לאימון, אתה יכול לספק את ה-callback tf.keras.callbacks.BackupAndRestore
כדי להוסיף את פונקציונליות סובלנות התקלות.
כדי לעזור להדגים זאת, נתחיל תחילה בהגדרת מחלקה להתקשרות חוזרת שזורקת שגיאה באופן מלאכותי במהלך המחסום החמישי:
class InterruptingCallback(tf.keras.callbacks.Callback):
# A callback for artificially interrupting training.
def on_epoch_end(self, epoch, log=None):
if epoch == 4:
raise RuntimeError('Interruption')
לאחר מכן, הגדר והצג מודל פשוט של Keras, הגדר את פונקציית ההפסד, התקשר Model.compile
, והגדר התקשרות חוזרת tf.keras.callbacks.BackupAndRestore
את המחסומים בספרייה זמנית:
def create_model():
return tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
])
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model = create_model()
model.compile(optimizer='adam',
loss=loss,
metrics=['accuracy'],
steps_per_execution=10)
log_dir = tempfile.mkdtemp()
backup_restore_callback = tf.keras.callbacks.BackupAndRestore(
backup_dir = log_dir
)
כעת, התחל לאמן את הדוגמנית עם Model.fit
. במהלך האימון, המחסומים יישמרו הודות ל- backup_restore_callback
שהוגדר לעיל, בעוד שה- InterruptingCallback
יעלה חריג מלאכותי כדי לדמות כשל.
try:
model.fit(x=x_train,
y=y_train,
epochs=10,
validation_data=(x_test, y_test),
callbacks=[backup_restore_callback, InterruptingCallback()])
except Exception as e:
print(f'{type(e).__name__}:{e}')
Epoch 1/10 1875/1875 [==============================] - 3s 2ms/step - loss: 0.2186 - accuracy: 0.9352 - val_loss: 0.1267 - val_accuracy: 0.9615 Epoch 2/10 1875/1875 [==============================] - 2s 1ms/step - loss: 0.0967 - accuracy: 0.9700 - val_loss: 0.0910 - val_accuracy: 0.9718 Epoch 3/10 1875/1875 [==============================] - 2s 1ms/step - loss: 0.0687 - accuracy: 0.9784 - val_loss: 0.0679 - val_accuracy: 0.9797 Epoch 4/10 1875/1875 [==============================] - 2s 1ms/step - loss: 0.0527 - accuracy: 0.9829 - val_loss: 0.0623 - val_accuracy: 0.9814 Epoch 5/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0434 - accuracy: 0.9857RuntimeError:Interruption
לאחר מכן, הצג את המודל של Keras, התקשר Model.compile
והמשך לאמן את הדגם עם Model.fit
מנקודת ביקורת שנשמרה בעבר:
model = create_model()
model.compile(optimizer='adam',
loss=loss,
metrics=['accuracy'],
steps_per_execution=10)
model.fit(x=x_train,
y=y_train,
epochs=10,
validation_data=(x_test, y_test),
callbacks=[backup_restore_callback])
Epoch 6/10 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0370 - accuracy: 0.9879 - val_loss: 0.0732 - val_accuracy: 0.9791 Epoch 7/10 1875/1875 [==============================] - 2s 1ms/step - loss: 0.0306 - accuracy: 0.9898 - val_loss: 0.0601 - val_accuracy: 0.9827 Epoch 8/10 1875/1875 [==============================] - 2s 1ms/step - loss: 0.0259 - accuracy: 0.9913 - val_loss: 0.0655 - val_accuracy: 0.9819 Epoch 9/10 1875/1875 [==============================] - 2s 1ms/step - loss: 0.0244 - accuracy: 0.9918 - val_loss: 0.0746 - val_accuracy: 0.9812 Epoch 10/10 1875/1875 [==============================] - 2s 1ms/step - loss: 0.0221 - accuracy: 0.9923 - val_loss: 0.0818 - val_accuracy: 0.9813 <keras.callbacks.History at 0x7fcfe0647350>
TensorFlow 2: כתוב נקודות ביקורת ידניות עם לולאת אימון מותאמת אישית
אם אתה משתמש בלולאת אימון מותאמת אישית ב-TensorFlow 2, אתה יכול ליישם מנגנון סובלנות תקלות עם ממשקי API של tf.train.Checkpoint
ו- tf.train.CheckpointManager
.
דוגמה זו מדגימה כיצד:
- השתמש באובייקט
tf.train.Checkpoint
כדי ליצור נקודת ביקורת באופן ידני, שבו האובייקטים הניתנים למעקב שברצונך לשמור מוגדרים כמאפיינים. - השתמש ב-
tf.train.CheckpointManager
כדי לנהל מספר מחסומים.
התחל על ידי הגדרה ומופע של מודל Keras, האופטימיזציה ופונקציית האובדן. לאחר מכן, צור Checkpoint
שמנהל שני אובייקטים עם מצבים ניתנים למעקב (המודל והאופטימיזר), וכן CheckpointManager
לרישום ושמירה של מספר מחסומים בספרייה זמנית.
model = create_model()
optimizer = tf.keras.optimizers.SGD(learning_rate=0.001)
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
log_dir = tempfile.mkdtemp()
epochs = 5
steps_per_epoch = 5
checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
checkpoint_manager = tf.train.CheckpointManager(
checkpoint, log_dir, max_to_keep=2)
כעת, יישם לולאת אימון מותאמת אישית שבה לאחר העידן הראשון בכל פעם שמתחיל עידן חדש, נקודת המחסום האחרונה נטען:
for epoch in range(epochs):
if epoch > 0:
tf.train.load_checkpoint(save_path)
print(f"\nStart of epoch {epoch}")
for step in range(steps_per_epoch):
with tf.GradientTape() as tape:
logits = model(x_train, training=True)
loss_value = loss_fn(y_train, logits)
grads = tape.gradient(loss_value, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
save_path = checkpoint_manager.save()
print(f"Checkpoint saved to {save_path}")
print(f"Training loss at step {step}: {loss_value}")
Start of epoch 0 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-1 Training loss at step 0: 2.3636362552642822 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-2 Training loss at step 1: 2.3626415729522705 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-3 Training loss at step 2: 2.3613197803497314 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-4 Training loss at step 3: 2.360600233078003 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-5 Training loss at step 4: 2.3589422702789307 Start of epoch 1 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-6 Training loss at step 0: 2.3563339710235596 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-7 Training loss at step 1: 2.3568854331970215 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-8 Training loss at step 2: 2.354109287261963 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-9 Training loss at step 3: 2.3532731533050537 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-10 Training loss at step 4: 2.351112127304077 Start of epoch 2 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-11 Training loss at step 0: 2.348905563354492 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-12 Training loss at step 1: 2.349478006362915 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-13 Training loss at step 2: 2.3487260341644287 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-14 Training loss at step 3: 2.345991611480713 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-15 Training loss at step 4: 2.3451104164123535 Start of epoch 3 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-16 Training loss at step 0: 2.3441312313079834 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-17 Training loss at step 1: 2.341529130935669 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-18 Training loss at step 2: 2.342329263687134 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-19 Training loss at step 3: 2.340449571609497 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-20 Training loss at step 4: 2.3367927074432373 Start of epoch 4 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-21 Training loss at step 0: 2.3366076946258545 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-22 Training loss at step 1: 2.335028886795044 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-23 Training loss at step 2: 2.3338520526885986 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-24 Training loss at step 3: 2.3345272541046143 Checkpoint saved to /tmp/tmpnr4ss2g8/ckpt-25 Training loss at step 4: 2.332385301589966
הצעדים הבאים
למידע נוסף על סובלנות תקלות ונקודות ביקורת ב-TensorFlow 2, שקול את התיעוד הבא:
-
tf.keras.callbacks.BackupAndRestore
API. - מסמכי ה-API של
tf.train.Checkpoint
ו-tf.train.CheckpointManager
. - מדריך מחסומי הדרכה , כולל סעיף כתיבת מחסומים .
ייתכן שתמצא גם את החומר הבא הקשור להדרכה מבוזרת שימושי:
- סעיף סובלנות תקלות בהדרכה של ריבוי עובדים עם קרס .
- הסעיף כישלון במשימה במסירת הדרכה של שרת פרמטרים .