Перенос оценки

Посмотреть на TensorFlow.org Запустить в Google Colab Посмотреть исходный код на GitHub Скачать блокнот

Оценка является важной частью моделей измерения и сравнительного анализа.

В этом руководстве показано, как перенести задачи оценщика из TensorFlow 1 в TensorFlow 2. В Tensorflow 1 эта функциональность реализована с помощью tf.estimator.train_and_evaluate , когда API работает распределенно. В Tensorflow 2 вы можете использовать встроенный tf.keras.utils.SidecarEvaluator или собственный цикл оценки в задаче оценщика.

Как в TensorFlow 1 ( tf.estimator.Estimator.evaluate ), так и в TensorFlow 2 ( Model.fit(..., validation_data=(...)) или Model.evaluate ) есть простые варианты последовательной оценки. Задача оценщика предпочтительнее, если вы хотите, чтобы ваши работники не переключались между обучением и оценкой, а встроенная оценка в Model.fit предпочтительнее, если вы хотите, чтобы ваша оценка была распространена.

Настраивать

import tensorflow.compat.v1 as tf1
import tensorflow as tf
import numpy as np
import tempfile
import time
import os
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
11493376/11490434 [==============================] - 0s 0us/step
11501568/11490434 [==============================] - 0s 0us/step

TensorFlow 1: оценка с использованием tf.estimator.train_and_evaluate

В TensorFlow 1 вы можете настроить tf.estimator для оценки оценщика с помощью tf.estimator.train_and_evaluate .

В этом примере начните с определения tf.estimator.Estimator и спецификаций обучения и оценки:

feature_columns = [tf1.feature_column.numeric_column("x", shape=[28, 28])]

classifier = tf1.estimator.DNNClassifier(
    feature_columns=feature_columns,
    hidden_units=[256, 32],
    optimizer=tf1.train.AdamOptimizer(0.001),
    n_classes=10,
    dropout=0.2
)

train_input_fn = tf1.estimator.inputs.numpy_input_fn(
    x={"x": x_train},
    y=y_train.astype(np.int32),
    num_epochs=10,
    batch_size=50,
    shuffle=True,
)

test_input_fn = tf1.estimator.inputs.numpy_input_fn(
    x={"x": x_test},
    y=y_test.astype(np.int32),
    num_epochs=10,
    shuffle=False
)

train_spec = tf1.estimator.TrainSpec(input_fn=train_input_fn, max_steps=10)
eval_spec = tf1.estimator.EvalSpec(input_fn=test_input_fn,
                                   steps=10,
                                   throttle_secs=0)
INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpv82biaa9
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpv82biaa9', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
WARNING:tensorflow:From /tmp/ipykernel_20878/122738158.py:11: The name tf.estimator.inputs is deprecated. Please use tf.compat.v1.estimator.inputs instead.

WARNING:tensorflow:From /tmp/ipykernel_20878/122738158.py:11: The name tf.estimator.inputs.numpy_input_fn is deprecated. Please use tf.compat.v1.estimator.inputs.numpy_input_fn instead.

Затем обучите и оцените модель. Оценка выполняется синхронно между обучением, поскольку в этой записной книжке она ограничена локальным запуском и чередуется между обучением и оценкой. Однако, если оценщик используется распределенно, он будет выполняться как выделенная задача оценщика. Для получения дополнительной информации ознакомьтесь с руководством по миграции на распределенном обучении .

tf1.estimator.train_and_evaluate(estimator=classifier,
                                train_spec=train_spec,
                                eval_spec=eval_spec)
INFO:tensorflow:Not using Distribute Coordinator.
INFO:tensorflow:Running training and evaluation locally (non-distributed).
INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps None or save_checkpoints_secs 600.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:397: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_queue_runner.py:65: QueueRunner.__init__ (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_functions.py:491: add_queue_runner (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/monitored_session.py:914: start_queue_runners (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpv82biaa9/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 118.02926, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 10...
INFO:tensorflow:Saving checkpoints for 10 into /tmp/tmpv82biaa9/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 10...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-01-19T02:31:38
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpv82biaa9/model.ckpt-10
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.29827s
INFO:tensorflow:Finished evaluation at 2022-01-19-02:31:38
INFO:tensorflow:Saving dict for global step 10: accuracy = 0.4953125, average_loss = 1.8270489, global_step = 10, loss = 233.86226
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 10: /tmp/tmpv82biaa9/model.ckpt-10
INFO:tensorflow:Loss for final step: 92.23195.
({'accuracy': 0.4953125,
  'average_loss': 1.8270489,
  'loss': 233.86226,
  'global_step': 10},
 [])

TensorFlow 2: оценка модели Keras

В TensorFlow 2, если вы используете Model.fit API для обучения, вы можете оценить модель с помощью tf.keras.utils.SidecarEvaluator . Вы также можете визуализировать метрики оценки в Tensorboard, которые не показаны в этом руководстве.

Чтобы продемонстрировать это, давайте сначала начнем с определения и обучения модели:

def create_model():
  return tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(512, activation='relu'),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10)
  ])

loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

model = create_model()
model.compile(optimizer='adam',
              loss=loss,
              metrics=['accuracy'],
              steps_per_execution=10,
              run_eagerly=True)

log_dir = tempfile.mkdtemp()
model_checkpoint = tf.keras.callbacks.ModelCheckpoint(
    filepath=os.path.join(log_dir, 'ckpt-{epoch}'),
    save_weights_only=True)

model.fit(x=x_train,
          y=y_train,
          epochs=1,
          callbacks=[model_checkpoint])
1875/1875 [==============================] - 27s 14ms/step - loss: 0.2202 - accuracy: 0.9350
<keras.callbacks.History at 0x7f534c8dbed0>

Затем оцените модель с помощью tf.keras.utils.SidecarEvaluator . В реальном обучении рекомендуется использовать отдельное задание для проведения оценки, чтобы высвободить рабочие ресурсы для обучения.

data = tf.data.Dataset.from_tensor_slices((x_test, y_test))
data = data.batch(64)

tf.keras.utils.SidecarEvaluator(
    model=model,
    data=data,
    checkpoint_dir=log_dir,
    max_evaluations=1
).start()
INFO:tensorflow:Waiting for new checkpoint at /tmp/tmpl6y5s71p
INFO:tensorflow:Found new checkpoint at /tmp/tmpl6y5s71p/ckpt-1
INFO:tensorflow:Evaluation starts: Model weights loaded from latest checkpoint file /tmp/tmpl6y5s71p/ckpt-1
157/157 - 2s - loss: 0.1006 - accuracy: 0.9697 - 2s/epoch - 10ms/step
INFO:tensorflow:End of evaluation. Metrics: loss=0.10060054063796997 accuracy=0.9696999788284302
INFO:tensorflow:Last checkpoint evaluated. SidecarEvaluator stops.

Следующие шаги