Ejemplos de migración: estimadores enlatados

Ver en TensorFlow.org Ejecutar en Google Colab Ver fuente en GitHub Descargar libreta

Los estimadores enlatados (o prefabricados) se han usado tradicionalmente en TensorFlow 1 como formas rápidas y fáciles de entrenar modelos para una variedad de casos de uso típicos. TensorFlow 2 proporciona sustitutos aproximados sencillos para algunos de ellos a través de modelos Keras. Para aquellos estimadores enlatados que no tienen sustitutos integrados de TensorFlow 2, aún puede crear su propio reemplazo con bastante facilidad.

Esta guía muestra algunos ejemplos de equivalentes directos y sustituciones personalizadas para demostrar cómo los modelos derivados de tf.estimator de TensorFlow 1 se pueden migrar a TF2 con Keras.

Es decir, esta guía incluye ejemplos para migrar:

Un precursor común del entrenamiento de un modelo es el preprocesamiento de características, que se realiza para los modelos de TensorFlow 1 Estimator con tf.feature_column . Para obtener más información sobre el preprocesamiento de funciones en TensorFlow 2, consulte esta guía sobre la migración de columnas de funciones .

Configuración

Comience con un par de importaciones necesarias de TensorFlow,

pip install tensorflow_decision_forests
import keras
import pandas as pd
import tensorflow as tf
import tensorflow.compat.v1 as tf1
import tensorflow_decision_forests as tfdf
WARNING:root:TF Parameter Server distributed training not available (this is expected for the pre-build release).

preparar algunos datos simples para la demostración del conjunto de datos estándar del Titanic,

x_train = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv')
x_eval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv')
x_train['sex'].replace(('male', 'female'), (0, 1), inplace=True)
x_eval['sex'].replace(('male', 'female'), (0, 1), inplace=True)

x_train['alone'].replace(('n', 'y'), (0, 1), inplace=True)
x_eval['alone'].replace(('n', 'y'), (0, 1), inplace=True)

x_train['class'].replace(('First', 'Second', 'Third'), (1, 2, 3), inplace=True)
x_eval['class'].replace(('First', 'Second', 'Third'), (1, 2, 3), inplace=True)

x_train.drop(['embark_town', 'deck'], axis=1, inplace=True)
x_eval.drop(['embark_town', 'deck'], axis=1, inplace=True)

y_train = x_train.pop('survived')
y_eval = x_eval.pop('survived')
# Data setup for TensorFlow 1 with `tf.estimator`
def _input_fn():
  return tf1.data.Dataset.from_tensor_slices((dict(x_train), y_train)).batch(32)


def _eval_input_fn():
  return tf1.data.Dataset.from_tensor_slices((dict(x_eval), y_eval)).batch(32)


FEATURE_NAMES = [
    'age', 'fare', 'sex', 'n_siblings_spouses', 'parch', 'class', 'alone'
]

feature_columns = []
for fn in FEATURE_NAMES:
  feat_col = tf1.feature_column.numeric_column(fn, dtype=tf.float32)
  feature_columns.append(feat_col)

y cree un método para instanciar un optimizador de muestra simple para usar con nuestros diversos modelos TensorFlow 1 Estimator y TensorFlow 2 Keras.

def create_sample_optimizer(tf_version):
  if tf_version == 'tf1':
    optimizer = lambda: tf.keras.optimizers.Ftrl(
        l1_regularization_strength=0.001,
        learning_rate=tf1.train.exponential_decay(
            learning_rate=0.1,
            global_step=tf1.train.get_global_step(),
            decay_steps=10000,
            decay_rate=0.9))
  elif tf_version == 'tf2':
    optimizer = tf.keras.optimizers.Ftrl(
        l1_regularization_strength=0.001,
        learning_rate=tf.keras.optimizers.schedules.ExponentialDecay(
            initial_learning_rate=0.1, decay_steps=10000, decay_rate=0.9))
  return optimizer

Ejemplo 1: Migración desde LinearEstimator

TF1: Usando Estimador Lineal

En TensorFlow 1, puede usar tf.estimator.LinearEstimator para crear un modelo lineal de referencia para problemas de regresión y clasificación.

linear_estimator = tf.estimator.LinearEstimator(
    head=tf.estimator.BinaryClassHead(),
    feature_columns=feature_columns,
    optimizer=create_sample_optimizer('tf1'))
INFO:tensorflow:Using default config.
INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpvoycvffz
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpvoycvffz
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpvoycvffz', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpvoycvffz', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
linear_estimator.train(input_fn=_input_fn, steps=100)
linear_estimator.evaluate(input_fn=_eval_input_fn, steps=10)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:401: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:401: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/canned/linear.py:1478: UserWarning: `layer.add_variable` is deprecated and will be removed in a future version. Please use `layer.add_weight` method instead.
  getter=tf.compat.v1.get_variable)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/ftrl.py:149: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/ftrl.py:149: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpvoycvffz/model.ckpt.
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpvoycvffz/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 0.6931472, step = 0
INFO:tensorflow:loss = 0.6931472, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 20...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 20...
INFO:tensorflow:Saving checkpoints for 20 into /tmp/tmpvoycvffz/model.ckpt.
INFO:tensorflow:Saving checkpoints for 20 into /tmp/tmpvoycvffz/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 20...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 20...
INFO:tensorflow:Loss for final step: 0.55268794.
INFO:tensorflow:Loss for final step: 0.55268794.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-01-29T02:21:45
INFO:tensorflow:Starting evaluation at 2022-01-29T02:21:45
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpvoycvffz/model.ckpt-20
INFO:tensorflow:Restoring parameters from /tmp/tmpvoycvffz/model.ckpt-20
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Inference Time : 0.50224s
INFO:tensorflow:Inference Time : 0.50224s
INFO:tensorflow:Finished evaluation at 2022-01-29-02:21:45
INFO:tensorflow:Finished evaluation at 2022-01-29-02:21:45
INFO:tensorflow:Saving dict for global step 20: accuracy = 0.70075756, accuracy_baseline = 0.625, auc = 0.75472915, auc_precision_recall = 0.65362054, average_loss = 0.5759378, global_step = 20, label/mean = 0.375, loss = 0.5704812, precision = 0.6388889, prediction/mean = 0.41331062, recall = 0.46464646
INFO:tensorflow:Saving dict for global step 20: accuracy = 0.70075756, accuracy_baseline = 0.625, auc = 0.75472915, auc_precision_recall = 0.65362054, average_loss = 0.5759378, global_step = 20, label/mean = 0.375, loss = 0.5704812, precision = 0.6388889, prediction/mean = 0.41331062, recall = 0.46464646
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 20: /tmp/tmpvoycvffz/model.ckpt-20
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 20: /tmp/tmpvoycvffz/model.ckpt-20
{'accuracy': 0.70075756,
 'accuracy_baseline': 0.625,
 'auc': 0.75472915,
 'auc_precision_recall': 0.65362054,
 'average_loss': 0.5759378,
 'label/mean': 0.375,
 'loss': 0.5704812,
 'precision': 0.6388889,
 'prediction/mean': 0.41331062,
 'recall': 0.46464646,
 'global_step': 20}

TF2: Uso del modelo lineal de Keras

En TensorFlow 2, puede crear una instancia de Keras tf.compat.v1.keras.models.LinearModel que es el sustituto de tf.estimator.LinearEstimator . La ruta tf.compat.v1.keras se usa para indicar que el modelo prefabricado existe para la compatibilidad.

linear_model = tf.compat.v1.keras.experimental.LinearModel()
linear_model.compile(loss='mse', optimizer=create_sample_optimizer('tf2'), metrics=['accuracy'])
linear_model.fit(x_train, y_train, epochs=10)
linear_model.evaluate(x_eval, y_eval, return_dict=True)
Epoch 1/10
20/20 [==============================] - 0s 2ms/step - loss: 2.8157 - accuracy: 0.6300
Epoch 2/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2758 - accuracy: 0.6427
Epoch 3/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2470 - accuracy: 0.6699
Epoch 4/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1954 - accuracy: 0.7177
Epoch 5/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1931 - accuracy: 0.7145
Epoch 6/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1816 - accuracy: 0.7496
Epoch 7/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1766 - accuracy: 0.7751
Epoch 8/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2198 - accuracy: 0.7560
Epoch 9/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1657 - accuracy: 0.7959
Epoch 10/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1738 - accuracy: 0.7959
9/9 [==============================] - 0s 2ms/step - loss: 0.2278 - accuracy: 0.6780
{'loss': 0.22778697311878204, 'accuracy': 0.6780303120613098}

Ejemplo 2: Migración desde DNNEstimator

TF1: Uso de DNNEstimator

En TensorFlow 1, puede usar tf.estimator.DNNEstimator para crear un modelo DNN de referencia para problemas de regresión y clasificación.

dnn_estimator = tf.estimator.DNNEstimator(
    head=tf.estimator.BinaryClassHead(),
    feature_columns=feature_columns,
    hidden_units=[128],
    activation_fn=tf.nn.relu,
    optimizer=create_sample_optimizer('tf1'))
INFO:tensorflow:Using default config.
INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmphckb8f81
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmphckb8f81
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmphckb8f81', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmphckb8f81', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
dnn_estimator.train(input_fn=_input_fn, steps=100)
dnn_estimator.evaluate(input_fn=_eval_input_fn, steps=10)
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmphckb8f81/model.ckpt.
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmphckb8f81/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 2.1811047, step = 0
INFO:tensorflow:loss = 2.1811047, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 20...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 20...
INFO:tensorflow:Saving checkpoints for 20 into /tmp/tmphckb8f81/model.ckpt.
INFO:tensorflow:Saving checkpoints for 20 into /tmp/tmphckb8f81/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 20...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 20...
INFO:tensorflow:Loss for final step: 0.5881681.
INFO:tensorflow:Loss for final step: 0.5881681.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-01-29T02:21:48
INFO:tensorflow:Starting evaluation at 2022-01-29T02:21:48
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmphckb8f81/model.ckpt-20
INFO:tensorflow:Restoring parameters from /tmp/tmphckb8f81/model.ckpt-20
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Inference Time : 0.47075s
INFO:tensorflow:Inference Time : 0.47075s
INFO:tensorflow:Finished evaluation at 2022-01-29-02:21:49
INFO:tensorflow:Finished evaluation at 2022-01-29-02:21:49
INFO:tensorflow:Saving dict for global step 20: accuracy = 0.7083333, accuracy_baseline = 0.625, auc = 0.70716256, auc_precision_recall = 0.6146256, average_loss = 0.60399944, global_step = 20, label/mean = 0.375, loss = 0.5986442, precision = 0.6486486, prediction/mean = 0.41256863, recall = 0.4848485
INFO:tensorflow:Saving dict for global step 20: accuracy = 0.7083333, accuracy_baseline = 0.625, auc = 0.70716256, auc_precision_recall = 0.6146256, average_loss = 0.60399944, global_step = 20, label/mean = 0.375, loss = 0.5986442, precision = 0.6486486, prediction/mean = 0.41256863, recall = 0.4848485
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 20: /tmp/tmphckb8f81/model.ckpt-20
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 20: /tmp/tmphckb8f81/model.ckpt-20
{'accuracy': 0.7083333,
 'accuracy_baseline': 0.625,
 'auc': 0.70716256,
 'auc_precision_recall': 0.6146256,
 'average_loss': 0.60399944,
 'label/mean': 0.375,
 'loss': 0.5986442,
 'precision': 0.6486486,
 'prediction/mean': 0.41256863,
 'recall': 0.4848485,
 'global_step': 20}

TF2: uso de Keras para crear un modelo DNN personalizado

En TensorFlow 2, puede crear un modelo DNN personalizado para sustituir uno generado por tf.estimator.DNNEstimator , con niveles similares de personalización especificada por el usuario (por ejemplo, como en el ejemplo anterior, la capacidad de personalizar un optimizador de modelo elegido) .

Se puede usar un flujo de trabajo similar para reemplazar tf.estimator.experimental.RNNEstimator con un modelo Keras RNN. Keras proporciona una serie de opciones integradas y personalizables a través de tf.keras.layers.RNN , tf.keras.layers.LSTM y tf.keras.layers.GRU ; consulte aquí para obtener más detalles.

dnn_model = tf.keras.models.Sequential(
    [tf.keras.layers.Dense(128, activation='relu'),
     tf.keras.layers.Dense(1)])

dnn_model.compile(loss='mse', optimizer=create_sample_optimizer('tf2'), metrics=['accuracy'])
dnn_model.fit(x_train, y_train, epochs=10)
dnn_model.evaluate(x_eval, y_eval, return_dict=True)
Epoch 1/10
20/20 [==============================] - 0s 2ms/step - loss: 551.2993 - accuracy: 0.5997
Epoch 2/10
20/20 [==============================] - 0s 2ms/step - loss: 16.8562 - accuracy: 0.6427
Epoch 3/10
20/20 [==============================] - 0s 2ms/step - loss: 0.3048 - accuracy: 0.7161
Epoch 4/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2475 - accuracy: 0.7416
Epoch 5/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2334 - accuracy: 0.7512
Epoch 6/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2200 - accuracy: 0.7416
Epoch 7/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2012 - accuracy: 0.7656
Epoch 8/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2025 - accuracy: 0.7624
Epoch 9/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2185 - accuracy: 0.7703
Epoch 10/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2046 - accuracy: 0.7687
9/9 [==============================] - 0s 2ms/step - loss: 0.2227 - accuracy: 0.6856
{'loss': 0.2227054387331009, 'accuracy': 0.685606062412262}

Ejemplo 3: Migración desde DNNLinearCombinedEstimator

TF1: uso de DNNLinearCombinedEstimator

En TensorFlow 1, puede usar tf.estimator.DNNLinearCombinedEstimator para crear un modelo combinado de referencia para problemas de regresión y clasificación con capacidad de personalización para sus componentes lineales y DNN.

optimizer = create_sample_optimizer('tf1')

combined_estimator = tf.estimator.DNNLinearCombinedEstimator(
    head=tf.estimator.BinaryClassHead(),
    # Wide settings
    linear_feature_columns=feature_columns,
    linear_optimizer=optimizer,
    # Deep settings
    dnn_feature_columns=feature_columns,
    dnn_hidden_units=[128],
    dnn_optimizer=optimizer)
INFO:tensorflow:Using default config.
INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpwl5e5eaq
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpwl5e5eaq
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpwl5e5eaq', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpwl5e5eaq', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
combined_estimator.train(input_fn=_input_fn, steps=100)
combined_estimator.evaluate(input_fn=_eval_input_fn, steps=10)
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/canned/linear.py:1478: UserWarning: `layer.add_variable` is deprecated and will be removed in a future version. Please use `layer.add_weight` method instead.
  getter=tf.compat.v1.get_variable)
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpwl5e5eaq/model.ckpt.
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpwl5e5eaq/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 2.5475807, step = 0
INFO:tensorflow:loss = 2.5475807, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 20...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 20...
INFO:tensorflow:Saving checkpoints for 20 into /tmp/tmpwl5e5eaq/model.ckpt.
INFO:tensorflow:Saving checkpoints for 20 into /tmp/tmpwl5e5eaq/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 20...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 20...
INFO:tensorflow:Loss for final step: 0.58060575.
INFO:tensorflow:Loss for final step: 0.58060575.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-01-29T02:21:53
INFO:tensorflow:Starting evaluation at 2022-01-29T02:21:53
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpwl5e5eaq/model.ckpt-20
INFO:tensorflow:Restoring parameters from /tmp/tmpwl5e5eaq/model.ckpt-20
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Inference Time : 0.54029s
INFO:tensorflow:Inference Time : 0.54029s
INFO:tensorflow:Finished evaluation at 2022-01-29-02:21:53
INFO:tensorflow:Finished evaluation at 2022-01-29-02:21:53
INFO:tensorflow:Saving dict for global step 20: accuracy = 0.6931818, accuracy_baseline = 0.625, auc = 0.73532283, auc_precision_recall = 0.630229, average_loss = 0.65179086, global_step = 20, label/mean = 0.375, loss = 0.63768697, precision = 0.60714287, prediction/mean = 0.4162652, recall = 0.5151515
INFO:tensorflow:Saving dict for global step 20: accuracy = 0.6931818, accuracy_baseline = 0.625, auc = 0.73532283, auc_precision_recall = 0.630229, average_loss = 0.65179086, global_step = 20, label/mean = 0.375, loss = 0.63768697, precision = 0.60714287, prediction/mean = 0.4162652, recall = 0.5151515
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 20: /tmp/tmpwl5e5eaq/model.ckpt-20
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 20: /tmp/tmpwl5e5eaq/model.ckpt-20
{'accuracy': 0.6931818,
 'accuracy_baseline': 0.625,
 'auc': 0.73532283,
 'auc_precision_recall': 0.630229,
 'average_loss': 0.65179086,
 'label/mean': 0.375,
 'loss': 0.63768697,
 'precision': 0.60714287,
 'prediction/mean': 0.4162652,
 'recall': 0.5151515,
 'global_step': 20}

TF2: Uso de Keras WideDeepModel

En TensorFlow 2, puede crear una instancia de Keras tf.compat.v1.keras.models.WideDeepModel para sustituir una generada por tf.estimator.DNNLinearCombinedEstimator , con niveles similares de personalización especificada por el usuario (por ejemplo, como en el ejemplo anterior, la capacidad de personalizar un optimizador de modelo elegido).

Este WideDeepModel se construye sobre la base de un LinearModel constituyente y un modelo DNN personalizado, los cuales se analizan en los dos ejemplos anteriores. Si lo desea, también se puede usar un modelo lineal personalizado en lugar del Keras LinearModel .

Si desea construir su propio modelo en lugar de un estimador enlatado, vea cómo construir un modelo keras.Sequential . Para obtener más información sobre el entrenamiento personalizado y los optimizadores, también puede consultar esta guía .

# Create LinearModel and DNN Model as in Examples 1 and 2
optimizer = create_sample_optimizer('tf2')

linear_model = tf.compat.v1.keras.experimental.LinearModel()
linear_model.compile(loss='mse', optimizer=optimizer, metrics=['accuracy'])
linear_model.fit(x_train, y_train, epochs=10, verbose=0)

dnn_model = tf.keras.models.Sequential(
    [tf.keras.layers.Dense(128, activation='relu'),
     tf.keras.layers.Dense(1)])
dnn_model.compile(loss='mse', optimizer=optimizer, metrics=['accuracy'])
combined_model = tf.compat.v1.keras.experimental.WideDeepModel(linear_model,
                                                               dnn_model)
combined_model.compile(
    optimizer=[optimizer, optimizer], loss='mse', metrics=['accuracy'])
combined_model.fit([x_train, x_train], y_train, epochs=10)
combined_model.evaluate(x_eval, y_eval, return_dict=True)
Epoch 1/10
20/20 [==============================] - 0s 2ms/step - loss: 1118.0448 - accuracy: 0.6715
Epoch 2/10
20/20 [==============================] - 0s 2ms/step - loss: 0.5682 - accuracy: 0.7305
Epoch 3/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2719 - accuracy: 0.7671
Epoch 4/10
20/20 [==============================] - 0s 2ms/step - loss: 0.2032 - accuracy: 0.7831
Epoch 5/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1911 - accuracy: 0.7783
Epoch 6/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1895 - accuracy: 0.7863
Epoch 7/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1882 - accuracy: 0.7863
Epoch 8/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1717 - accuracy: 0.7974
Epoch 9/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1701 - accuracy: 0.7927
Epoch 10/10
20/20 [==============================] - 0s 2ms/step - loss: 0.1684 - accuracy: 0.7990
9/9 [==============================] - 0s 2ms/step - loss: 0.1930 - accuracy: 0.7424
{'loss': 0.19299836456775665, 'accuracy': 0.7424242496490479}

Ejemplo 4: Migración desde BoostedTreesEstimator

TF1: uso de BoostedTreesEstimator

En TensorFlow 1, puede usar tf.estimator.BoostedTreesEstimator para crear una línea de base para crear un modelo de refuerzo de gradiente de línea de base usando un conjunto de árboles de decisión para problemas de regresión y clasificación. Esta funcionalidad ya no se incluye en TensorFlow 2.

bt_estimator = tf1.estimator.BoostedTreesEstimator(
    head=tf.estimator.BinaryClassHead(),
    n_batches_per_layer=1,
    max_depth=10,
    n_trees=1000,
    feature_columns=feature_columns)
bt_estimator.train(input_fn=_input_fn, steps=1000)
bt_estimator.evaluate(input_fn=_eval_input_fn, steps=100)

TF2: uso de bosques de decisión de TensorFlow

En TensorFlow 2, el sustituto preempaquetado más cercano a un modelo generado por tf.estimator.BoostedTreesEstimator es uno creado con tfdf.keras.GradientBoostedTreesModel , que crea una secuencia entrenada secuencialmente de árboles de decisión poco profundos, cada uno diseñado para "aprender" de los errores. realizado por sus predecesores en la secuencia.

GradientBoostedTreesModel proporciona más opciones de personalización, lo que permite la especificación de todo, desde restricciones de profundidad básicas hasta condiciones de parada anticipada. Consulte aquí para obtener más detalles del atributo GradientBoostedTreesModel .

gbt_model = tfdf.keras.GradientBoostedTreesModel(
    task=tfdf.keras.Task.CLASSIFICATION)
gbt_model.compile(metrics=['mse', 'accuracy'])
Use /tmp/tmpbr1acn2_ as temporary training directory
train_df, eval_df = x_train.copy(), x_eval.copy()
train_df['survived'], eval_df['survived'] = y_train, y_eval

train_dataset = tfdf.keras.pd_dataframe_to_tf_dataset(train_df, label='survived')
eval_dataset = tfdf.keras.pd_dataframe_to_tf_dataset(eval_df, label='survived')

gbt_model.fit(train_dataset)
gbt_model.evaluate(eval_dataset, return_dict=True)
Starting reading the dataset
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_decision_forests/keras/core.py:2036: FutureWarning: In a future version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only
  features_dataframe = dataframe.drop(label, 1)
1/1 [==============================] - ETA: 0s
Dataset read in 0:00:03.161776
Training model
Model trained in 0:00:00.102649
Compiling model
1/1 [==============================] - 3s 3s/step
[INFO kernel.cc:1153] Loading model from path
[INFO abstract_model.cc:1063] Engine "GradientBoostedTreesQuickScorerExtended" built
[INFO kernel.cc:1001] Use fast generic engine
WARNING:tensorflow:AutoGraph could not transform <function simple_ml_inference_op_with_handle at 0x7f95e9db4e60> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: could not get source code
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING:tensorflow:AutoGraph could not transform <function simple_ml_inference_op_with_handle at 0x7f95e9db4e60> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: could not get source code
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING: AutoGraph could not transform <function simple_ml_inference_op_with_handle at 0x7f95e9db4e60> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: could not get source code
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
1/1 [==============================] - 0s 388ms/step - loss: 0.0000e+00 - mse: 0.1308 - accuracy: 0.8144
{'loss': 0.0, 'mse': 0.13076548278331757, 'accuracy': 0.814393937587738}

En TensorFlow 2, también hay otro sustituto TFDF disponible para un modelo generado por tf.estimator.BoostedTreesEstimator : tfdf.keras.RandomForestModel . RandomForestModel crea un alumno robusto y resistente al sobreajuste que consiste en una población votante de árboles de decisión profundos, cada uno entrenado en subconjuntos aleatorios del conjunto de datos de entrenamiento de entrada.

RandomForestModel y GradientBoostedTreesModel proporcionan niveles de personalización igualmente extensos. Elegir entre ellos es específico del problema y depende de su tarea o aplicación.

Consulta los documentos de la API para obtener más información sobre los atributos RandomForestModel y GradientBoostedTreesModel .

rf_model = tfdf.keras.RandomForestModel(
    task=tfdf.keras.Task.CLASSIFICATION)
rf_model.compile(metrics=['mse', 'accuracy'])
Use /tmp/tmpluh2ebcj as temporary training directory
rf_model.fit(train_dataset)
rf_model.evaluate(eval_dataset, return_dict=True)
Starting reading the dataset
1/1 [==============================] - ETA: 0s
Dataset read in 0:00:00.094262
Training model
Model trained in 0:00:00.083656
Compiling model
1/1 [==============================] - 0s 260ms/step
[INFO kernel.cc:1153] Loading model from path
[INFO kernel.cc:1001] Use fast generic engine
1/1 [==============================] - 0s 123ms/step - loss: 0.0000e+00 - mse: 0.1270 - accuracy: 0.8636
{'loss': 0.0, 'mse': 0.12698587775230408, 'accuracy': 0.8636363744735718}