Author: fchollet
View on TensorFlow.org | Run in Google Colab | View source on GitHub | View on keras.io |
Setup
import tensorflow as tf
import keras
from keras import layers
import numpy as np
Introduction
Keras provides default training and evaluation loops, fit()
and evaluate()
.
Their usage is covered in the guide
Training & evaluation with the built-in methods.
If you want to customize the learning algorithm of your model while still leveraging
the convenience of fit()
(for instance, to train a GAN using fit()
), you can subclass the Model
class and
implement your own train_step()
method, which
is called repeatedly during fit()
. This is covered in the guide
Customizing what happens in fit()
.
Now, if you want very low-level control over training & evaluation, you should write your own training & evaluation loops from scratch. This is what this guide is about.
Using the GradientTape
: a first end-to-end example
Calling a model inside a GradientTape
scope enables you to retrieve the gradients of
the trainable weights of the layer with respect to a loss value. Using an optimizer
instance, you can use these gradients to update these variables (which you can
retrieve using model.trainable_weights
).
Let's consider a simple MNIST model:
inputs = keras.Input(shape=(784,), name="digits")
x1 = layers.Dense(64, activation="relu")(inputs)
x2 = layers.Dense(64, activation="relu")(x1)
outputs = layers.Dense(10, name="predictions")(x2)
model = keras.Model(inputs=inputs, outputs=outputs)
Let's train it using mini-batch gradient with a custom training loop.
First, we're going to need an optimizer, a loss function, and a dataset:
# Instantiate an optimizer.
optimizer = keras.optimizers.SGD(learning_rate=1e-3)
# Instantiate a loss function.
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
# Prepare the training dataset.
batch_size = 64
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = np.reshape(x_train, (-1, 784))
x_test = np.reshape(x_test, (-1, 784))
# Reserve 10,000 samples for validation.
x_val = x_train[-10000:]
y_val = y_train[-10000:]
x_train = x_train[:-10000]
y_train = y_train[:-10000]
# Prepare the training dataset.
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(batch_size)
# Prepare the validation dataset.
val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val))
val_dataset = val_dataset.batch(batch_size)
Here's our training loop:
- We open a
for
loop that iterates over epochs - For each epoch, we open a
for
loop that iterates over the dataset, in batches - For each batch, we open a
GradientTape()
scope - Inside this scope, we call the model (forward pass) and compute the loss
- Outside the scope, we retrieve the gradients of the weights of the model with regard to the loss
- Finally, we use the optimizer to update the weights of the model based on the gradients
epochs = 2
for epoch in range(epochs):
print("\nStart of epoch %d" % (epoch,))
# Iterate over the batches of the dataset.
for step, (x_batch_train, y_batch_train) in enumerate(train_dataset):
# Open a GradientTape to record the operations run
# during the forward pass, which enables auto-differentiation.
with tf.GradientTape() as tape:
# Run the forward pass of the layer.
# The operations that the layer applies
# to its inputs are going to be recorded
# on the GradientTape.
logits = model(x_batch_train, training=True) # Logits for this minibatch
# Compute the loss value for this minibatch.
loss_value = loss_fn(y_batch_train, logits)
# Use the gradient tape to automatically retrieve
# the gradients of the trainable variables with respect to the loss.
grads = tape.gradient(loss_value, model.trainable_weights)
# Run one step of gradient descent by updating
# the value of the variables to minimize the loss.
optimizer.apply_gradients(zip(grads, model.trainable_weights))
# Log every 200 batches.
if step % 200 == 0:
print(
"Training loss (for one batch) at step %d: %.4f"
% (step, float(loss_value))
)
print("Seen so far: %s samples" % ((step + 1) * batch_size))
Start of epoch 0 WARNING:tensorflow:5 out of the last 5 calls to <function _BaseOptimizer._update_step_xla at 0x7f51fe36a4c0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. WARNING:tensorflow:6 out of the last 6 calls to <function _BaseOptimizer._update_step_xla at 0x7f51fe36a4c0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. Training loss (for one batch) at step 0: 131.3794 Seen so far: 64 samples Training loss (for one batch) at step 200: 1.2871 Seen so far: 12864 samples Training loss (for one batch) at step 400: 1.2652 Seen so far: 25664 samples Training loss (for one batch) at step 600: 0.8800 Seen so far: 38464 samples Start of epoch 1 Training loss (for one batch) at step 0: 0.8296 Seen so far: 64 samples Training loss (for one batch) at step 200: 1.3322 Seen so far: 12864 samples Training loss (for one batch) at step 400: 1.0486 Seen so far: 25664 samples Training loss (for one batch) at step 600: 0.6610 Seen so far: 38464 samples
Low-level handling of metrics
Let's add metrics monitoring to this basic loop.
You can readily reuse the built-in metrics (or custom ones you wrote) in such training loops written from scratch. Here's the flow:
- Instantiate the metric at the start of the loop
- Call
metric.update_state()
after each batch - Call
metric.result()
when you need to display the current value of the metric - Call
metric.reset_states()
when you need to clear the state of the metric (typically at the end of an epoch)
Let's use this knowledge to compute SparseCategoricalAccuracy
on validation data at
the end of each epoch:
# Get model
inputs = keras.Input(shape=(784,), name="digits")
x = layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = layers.Dense(64, activation="relu", name="dense_2")(x)
outputs = layers.Dense(10, name="predictions")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
# Instantiate an optimizer to train the model.
optimizer = keras.optimizers.SGD(learning_rate=1e-3)
# Instantiate a loss function.
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
# Prepare the metrics.
train_acc_metric = keras.metrics.SparseCategoricalAccuracy()
val_acc_metric = keras.metrics.SparseCategoricalAccuracy()
Here's our training & evaluation loop:
import time
epochs = 2
for epoch in range(epochs):
print("\nStart of epoch %d" % (epoch,))
start_time = time.time()
# Iterate over the batches of the dataset.
for step, (x_batch_train, y_batch_train) in enumerate(train_dataset):
with tf.GradientTape() as tape:
logits = model(x_batch_train, training=True)
loss_value = loss_fn(y_batch_train, logits)
grads = tape.gradient(loss_value, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
# Update training metric.
train_acc_metric.update_state(y_batch_train, logits)
# Log every 200 batches.
if step % 200 == 0:
print(
"Training loss (for one batch) at step %d: %.4f"
% (step, float(loss_value))
)
print("Seen so far: %d samples" % ((step + 1) * batch_size))
# Display metrics at the end of each epoch.
train_acc = train_acc_metric.result()
print("Training acc over epoch: %.4f" % (float(train_acc),))
# Reset training metrics at the end of each epoch
train_acc_metric.reset_states()
# Run a validation loop at the end of each epoch.
for x_batch_val, y_batch_val in val_dataset:
val_logits = model(x_batch_val, training=False)
# Update val metrics
val_acc_metric.update_state(y_batch_val, val_logits)
val_acc = val_acc_metric.result()
val_acc_metric.reset_states()
print("Validation acc: %.4f" % (float(val_acc),))
print("Time taken: %.2fs" % (time.time() - start_time))
Start of epoch 0 Training loss (for one batch) at step 0: 106.2691 Seen so far: 64 samples Training loss (for one batch) at step 200: 0.9259 Seen so far: 12864 samples Training loss (for one batch) at step 400: 0.9347 Seen so far: 25664 samples Training loss (for one batch) at step 600: 0.7641 Seen so far: 38464 samples Training acc over epoch: 0.7332 Validation acc: 0.8325 Time taken: 10.95s Start of epoch 1 Training loss (for one batch) at step 0: 0.5238 Seen so far: 64 samples Training loss (for one batch) at step 200: 0.7125 Seen so far: 12864 samples Training loss (for one batch) at step 400: 0.5705 Seen so far: 25664 samples Training loss (for one batch) at step 600: 0.6006 Seen so far: 38464 samples Training acc over epoch: 0.8424 Validation acc: 0.8525 Time taken: 10.59s
Speeding-up your training step with tf.function
The default runtime in TensorFlow 2 is eager execution. As such, our training loop above executes eagerly.
This is great for debugging, but graph compilation has a definite performance advantage. Describing your computation as a static graph enables the framework to apply global performance optimizations. This is impossible when the framework is constrained to greedily execute one operation after another, with no knowledge of what comes next.
You can compile into a static graph any function that takes tensors as input.
Just add a @tf.function
decorator on it, like this:
@tf.function
def train_step(x, y):
with tf.GradientTape() as tape:
logits = model(x, training=True)
loss_value = loss_fn(y, logits)
grads = tape.gradient(loss_value, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
train_acc_metric.update_state(y, logits)
return loss_value
Let's do the same with the evaluation step:
@tf.function
def test_step(x, y):
val_logits = model(x, training=False)
val_acc_metric.update_state(y, val_logits)
Now, let's re-run our training loop with this compiled training step:
import time
epochs = 2
for epoch in range(epochs):
print("\nStart of epoch %d" % (epoch,))
start_time = time.time()
# Iterate over the batches of the dataset.
for step, (x_batch_train, y_batch_train) in enumerate(train_dataset):
loss_value = train_step(x_batch_train, y_batch_train)
# Log every 200 batches.
if step % 200 == 0:
print(
"Training loss (for one batch) at step %d: %.4f"
% (step, float(loss_value))
)
print("Seen so far: %d samples" % ((step + 1) * batch_size))
# Display metrics at the end of each epoch.
train_acc = train_acc_metric.result()
print("Training acc over epoch: %.4f" % (float(train_acc),))
# Reset training metrics at the end of each epoch
train_acc_metric.reset_states()
# Run a validation loop at the end of each epoch.
for x_batch_val, y_batch_val in val_dataset:
test_step(x_batch_val, y_batch_val)
val_acc = val_acc_metric.result()
val_acc_metric.reset_states()
print("Validation acc: %.4f" % (float(val_acc),))
print("Time taken: %.2fs" % (time.time() - start_time))
Start of epoch 0 Training loss (for one batch) at step 0: 0.5162 Seen so far: 64 samples Training loss (for one batch) at step 200: 0.4599 Seen so far: 12864 samples Training loss (for one batch) at step 400: 0.3975 Seen so far: 25664 samples Training loss (for one batch) at step 600: 0.2557 Seen so far: 38464 samples Training acc over epoch: 0.8747 Validation acc: 0.8545 Time taken: 1.85s Start of epoch 1 Training loss (for one batch) at step 0: 0.6145 Seen so far: 64 samples Training loss (for one batch) at step 200: 0.3751 Seen so far: 12864 samples Training loss (for one batch) at step 400: 0.3464 Seen so far: 25664 samples Training loss (for one batch) at step 600: 0.4128 Seen so far: 38464 samples Training acc over epoch: 0.8919 Validation acc: 0.8996 Time taken: 1.34s
Much faster, isn't it?
Low-level handling of losses tracked by the model
Layers & models recursively track any losses created during the forward pass
by layers that call self.add_loss(value)
. The resulting list of scalar loss
values are available via the property model.losses
at the end of the forward pass.
If you want to be using these loss components, you should sum them and add them to the main loss in your training step.
Consider this layer, that creates an activity regularization loss:
@keras.saving.register_keras_serializable()
class ActivityRegularizationLayer(layers.Layer):
def call(self, inputs):
self.add_loss(1e-2 * tf.reduce_sum(inputs))
return inputs
Let's build a really simple model that uses it:
inputs = keras.Input(shape=(784,), name="digits")
x = layers.Dense(64, activation="relu")(inputs)
# Insert activity regularization as a layer
x = ActivityRegularizationLayer()(x)
x = layers.Dense(64, activation="relu")(x)
outputs = layers.Dense(10, name="predictions")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
Here's what our training step should look like now:
@tf.function
def train_step(x, y):
with tf.GradientTape() as tape:
logits = model(x, training=True)
loss_value = loss_fn(y, logits)
# Add any extra losses created during the forward pass.
loss_value += sum(model.losses)
grads = tape.gradient(loss_value, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
train_acc_metric.update_state(y, logits)
return loss_value
Summary
Now you know everything there is to know about using built-in training loops and writing your own from scratch.
To conclude, here's a simple end-to-end example that ties together everything you've learned in this guide: a DCGAN trained on MNIST digits.
End-to-end example: a GAN training loop from scratch
You may be familiar with Generative Adversarial Networks (GANs). GANs can generate new images that look almost real, by learning the latent distribution of a training dataset of images (the "latent space" of the images).
A GAN is made of two parts: a "generator" model that maps points in the latent space to points in image space, a "discriminator" model, a classifier that can tell the difference between real images (from the training dataset) and fake images (the output of the generator network).
A GAN training loop looks like this:
1) Train the discriminator. - Sample a batch of random points in the latent space. - Turn the points into fake images via the "generator" model. - Get a batch of real images and combine them with the generated images. - Train the "discriminator" model to classify generated vs. real images.
2) Train the generator. - Sample random points in the latent space. - Turn the points into fake images via the "generator" network. - Get a batch of real images and combine them with the generated images. - Train the "generator" model to "fool" the discriminator and classify the fake images as real.
For a much more detailed overview of how GANs works, see Deep Learning with Python.
Let's implement this training loop. First, create the discriminator meant to classify fake vs real digits:
discriminator = keras.Sequential(
[
keras.Input(shape=(28, 28, 1)),
layers.Conv2D(64, (3, 3), strides=(2, 2), padding="same"),
layers.LeakyReLU(alpha=0.2),
layers.Conv2D(128, (3, 3), strides=(2, 2), padding="same"),
layers.LeakyReLU(alpha=0.2),
layers.GlobalMaxPooling2D(),
layers.Dense(1),
],
name="discriminator",
)
discriminator.summary()
Model: "discriminator" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d (Conv2D) (None, 14, 14, 64) 640 leaky_re_lu (LeakyReLU) (None, 14, 14, 64) 0 conv2d_1 (Conv2D) (None, 7, 7, 128) 73856 leaky_re_lu_1 (LeakyReLU) (None, 7, 7, 128) 0 global_max_pooling2d (Glob (None, 128) 0 alMaxPooling2D) dense_4 (Dense) (None, 1) 129 ================================================================= Total params: 74625 (291.50 KB) Trainable params: 74625 (291.50 KB) Non-trainable params: 0 (0.00 Byte) _________________________________________________________________
Then let's create a generator network,
that turns latent vectors into outputs of shape (28, 28, 1)
(representing
MNIST digits):
latent_dim = 128
generator = keras.Sequential(
[
keras.Input(shape=(latent_dim,)),
# We want to generate 128 coefficients to reshape into a 7x7x128 map
layers.Dense(7 * 7 * 128),
layers.LeakyReLU(alpha=0.2),
layers.Reshape((7, 7, 128)),
layers.Conv2DTranspose(128, (4, 4), strides=(2, 2), padding="same"),
layers.LeakyReLU(alpha=0.2),
layers.Conv2DTranspose(128, (4, 4), strides=(2, 2), padding="same"),
layers.LeakyReLU(alpha=0.2),
layers.Conv2D(1, (7, 7), padding="same", activation="sigmoid"),
],
name="generator",
)
Here's the key bit: the training loop. As you can see it is quite straightforward. The training step function only takes 17 lines.
# Instantiate one optimizer for the discriminator and another for the generator.
d_optimizer = keras.optimizers.Adam(learning_rate=0.0003)
g_optimizer = keras.optimizers.Adam(learning_rate=0.0004)
# Instantiate a loss function.
loss_fn = keras.losses.BinaryCrossentropy(from_logits=True)
@tf.function
def train_step(real_images):
# Sample random points in the latent space
random_latent_vectors = tf.random.normal(shape=(batch_size, latent_dim))
# Decode them to fake images
generated_images = generator(random_latent_vectors)
# Combine them with real images
combined_images = tf.concat([generated_images, real_images], axis=0)
# Assemble labels discriminating real from fake images
labels = tf.concat(
[tf.ones((batch_size, 1)), tf.zeros((real_images.shape[0], 1))], axis=0
)
# Add random noise to the labels - important trick!
labels += 0.05 * tf.random.uniform(labels.shape)
# Train the discriminator
with tf.GradientTape() as tape:
predictions = discriminator(combined_images)
d_loss = loss_fn(labels, predictions)
grads = tape.gradient(d_loss, discriminator.trainable_weights)
d_optimizer.apply_gradients(zip(grads, discriminator.trainable_weights))
# Sample random points in the latent space
random_latent_vectors = tf.random.normal(shape=(batch_size, latent_dim))
# Assemble labels that say "all real images"
misleading_labels = tf.zeros((batch_size, 1))
# Train the generator (note that we should *not* update the weights
# of the discriminator)!
with tf.GradientTape() as tape:
predictions = discriminator(generator(random_latent_vectors))
g_loss = loss_fn(misleading_labels, predictions)
grads = tape.gradient(g_loss, generator.trainable_weights)
g_optimizer.apply_gradients(zip(grads, generator.trainable_weights))
return d_loss, g_loss, generated_images
Let's train our GAN, by repeatedly calling train_step
on batches of images.
Since our discriminator and generator are convnets, you're going to want to run this code on a GPU.
import os
# Prepare the dataset. We use both the training & test MNIST digits.
batch_size = 64
(x_train, _), (x_test, _) = keras.datasets.mnist.load_data()
all_digits = np.concatenate([x_train, x_test])
all_digits = all_digits.astype("float32") / 255.0
all_digits = np.reshape(all_digits, (-1, 28, 28, 1))
dataset = tf.data.Dataset.from_tensor_slices(all_digits)
dataset = dataset.shuffle(buffer_size=1024).batch(batch_size)
epochs = 1 # In practice you need at least 20 epochs to generate nice digits.
save_dir = "./"
for epoch in range(epochs):
print("\nStart epoch", epoch)
for step, real_images in enumerate(dataset):
# Train the discriminator & generator on one batch of real images.
d_loss, g_loss, generated_images = train_step(real_images)
# Logging.
if step % 200 == 0:
# Print metrics
print("discriminator loss at step %d: %.2f" % (step, d_loss))
print("adversarial loss at step %d: %.2f" % (step, g_loss))
# Save one generated image
img = keras.utils.array_to_img(generated_images[0] * 255.0, scale=False)
img.save(os.path.join(save_dir, "generated_img" + str(step) + ".png"))
# To limit execution time we stop after 10 steps.
# Remove the lines below to actually train the model!
if step > 10:
break
Start epoch 0 discriminator loss at step 0: 0.72 adversarial loss at step 0: 0.72
That's it! You'll get nice-looking fake MNIST digits after just ~30s of training on the Colab GPU.