W tym samouczku opisano, jak skonfigurować wysokowydajne symulacje za pomocą TFF w różnych typowych scenariuszach.
TODO (b/134543154): Wypełnij treść, niektóre z rzeczy do omówienia tutaj:
- używanie procesorów graficznych w konfiguracji z jedną maszyną,
- konfiguracja wielu maszyn w GCP/GKE, z TPU i bez,
- łączenie backendów podobnych do MapReduce,
- aktualne ograniczenia i kiedy/jak zostaną złagodzone.
Zobacz na TensorFlow.org | Uruchom w Google Colab | Wyświetl źródło na GitHub | Pobierz notatnik |
Zanim zaczniemy
Najpierw upewnij się, że notes jest połączony z zapleczem, które ma skompilowane odpowiednie składniki (w tym zależności gRPC dla scenariuszy z wieloma komputerami).
Teraz zacznijmy od załadowania przykładu MNIST ze strony TFF i zadeklarowania funkcji Pythona, która uruchomi małą pętlę eksperymentu na grupie 10 klientów.
!pip install --quiet --upgrade tensorflow-federated-nightly
!pip install --quiet --upgrade nest-asyncio
import nest_asyncio
nest_asyncio.apply()
import collections
import time
import tensorflow as tf
import tensorflow_federated as tff
source, _ = tff.simulation.datasets.emnist.load_data()
def map_fn(example):
return collections.OrderedDict(
x=tf.reshape(example['pixels'], [-1, 784]), y=example['label'])
def client_data(n):
ds = source.create_tf_dataset_for_client(source.client_ids[n])
return ds.repeat(10).shuffle(500).batch(20).map(map_fn)
train_data = [client_data(n) for n in range(10)]
element_spec = train_data[0].element_spec
def model_fn():
model = tf.keras.models.Sequential([
tf.keras.layers.InputLayer(input_shape=(784,)),
tf.keras.layers.Dense(units=10, kernel_initializer='zeros'),
tf.keras.layers.Softmax(),
])
return tff.learning.from_keras_model(
model,
input_spec=element_spec,
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])
trainer = tff.learning.build_federated_averaging_process(
model_fn, client_optimizer_fn=lambda: tf.keras.optimizers.SGD(0.02))
def evaluate(num_rounds=10):
state = trainer.initialize()
for _ in range(num_rounds):
t1 = time.time()
state, metrics = trainer.next(state, train_data)
t2 = time.time()
print('metrics {m}, round time {t:.2f} seconds'.format(
m=metrics, t=t2 - t1))
Symulacje pojedynczej maszyny
Teraz domyślnie włączone.
evaluate()
metrics <sparse_categorical_accuracy=0.13858024775981903,loss=3.0073554515838623>, round time 3.59 seconds metrics <sparse_categorical_accuracy=0.1796296238899231,loss=2.749046802520752>, round time 2.29 seconds metrics <sparse_categorical_accuracy=0.21656379103660583,loss=2.514779567718506>, round time 2.33 seconds metrics <sparse_categorical_accuracy=0.2637860178947449,loss=2.312587261199951>, round time 2.06 seconds metrics <sparse_categorical_accuracy=0.3334362208843231,loss=2.068122386932373>, round time 2.00 seconds metrics <sparse_categorical_accuracy=0.3737654387950897,loss=1.9268712997436523>, round time 2.42 seconds metrics <sparse_categorical_accuracy=0.4296296238899231,loss=1.7216310501098633>, round time 2.20 seconds metrics <sparse_categorical_accuracy=0.4655349850654602,loss=1.6489890813827515>, round time 2.18 seconds metrics <sparse_categorical_accuracy=0.5048353672027588,loss=1.5485210418701172>, round time 2.16 seconds metrics <sparse_categorical_accuracy=0.5564814805984497,loss=1.4140453338623047>, round time 2.41 seconds
Symulacje wielu maszyn na GCP/GKE, GPU, TPU i nie tylko...
Wkrótce.