Ver en TensorFlow.org | Ejecutar en Google Colab | Ver fuente en GitHub | Descargar cuaderno |
Este tutorial demuestra cómo implementar algoritmos federados personalizados en TFF que requieren el envío de diferentes datos a diferentes clientes. Es posible que ya esté familiarizado con tff.federated_broadcast
que envía un único valor que se da servidor a todos los clientes. Este tutorial se centra en casos en los que se envían diferentes partes de un valor basado en servidor a diferentes clientes. Esto puede resultar útil para dividir partes de un modelo entre diferentes clientes con el fin de evitar enviar el modelo completo a un solo cliente.
Vamos a empezar importando tanto tensorflow
y tensorflow_federated
.
!pip install --quiet --upgrade tensorflow-federated-nightly
!pip install --quiet --upgrade nest-asyncio
import nest_asyncio
nest_asyncio.apply()
import tensorflow as tf
import tensorflow_federated as tff
tff.backends.native.set_local_python_execution_context()
Envío de diferentes valores según los datos del cliente
Considere el caso en el que tenemos una lista colocada en el servidor desde la cual queremos enviar algunos elementos a cada cliente en función de algunos datos colocados por el cliente. Por ejemplo, una lista de cadenas en el servidor y en los clientes, una lista de índices separados por comas para descargar. Podemos implementar eso de la siguiente manera:
list_of_strings_type = tff.TensorType(tf.string, [None])
# We only ever send exactly two values to each client. The number of keys per
# client must be a fixed number across all clients.
number_of_keys_per_client = 2
keys_type = tff.TensorType(tf.int32, [number_of_keys_per_client])
get_size = tff.tf_computation(lambda x: tf.size(x))
select_fn = tff.tf_computation(lambda val, index: tf.gather(val, index))
client_data_type = tf.string
# A function from our client data to the indices of the values we'd like to
# select from the server.
@tff.tf_computation(client_data_type)
@tff.check_returns_type(keys_type)
def keys_for_client(client_string):
# We assume our client data is a single string consisting of exactly three
# comma-separated integers indicating which values to grab from the server.
split = tf.strings.split([client_string], sep=',')[0]
return tf.strings.to_number([split[0], split[1]], tf.int32)
@tff.tf_computation(tff.SequenceType(tf.string))
@tff.check_returns_type(tf.string)
def concatenate(values):
def reduce_fn(acc, item):
return tf.cond(tf.math.equal(acc, ''),
lambda: item,
lambda: tf.strings.join([acc, item], ','))
return values.reduce('', reduce_fn)
@tff.federated_computation(tff.type_at_server(list_of_strings_type), tff.type_at_clients(client_data_type))
def broadcast_based_on_client_data(list_of_strings_at_server, client_data):
keys_at_clients = tff.federated_map(keys_for_client, client_data)
max_key = tff.federated_map(get_size, list_of_strings_at_server)
values_at_clients = tff.federated_select(keys_at_clients, max_key, list_of_strings_at_server, select_fn)
value_at_clients = tff.federated_map(concatenate, values_at_clients)
return value_at_clients
Luego, podemos simular nuestro cálculo proporcionando la lista de cadenas colocada en el servidor, así como los datos de cadena para cada cliente:
client_data = ['0,1', '1,2', '2,0']
broadcast_based_on_client_data(['a', 'b', 'c'], client_data)
[<tf.Tensor: shape=(), dtype=string, numpy=b'a,b'>, <tf.Tensor: shape=(), dtype=string, numpy=b'b,c'>, <tf.Tensor: shape=(), dtype=string, numpy=b'c,a'>]
Envío de un elemento aleatorio a cada cliente
Alternativamente, puede resultar útil enviar una parte aleatoria de los datos del servidor a cada cliente. Podemos implementar eso generando primero una clave aleatoria en cada cliente y luego siguiendo un proceso de selección similar al utilizado anteriormente:
@tff.tf_computation(tf.int32)
@tff.check_returns_type(tff.TensorType(tf.int32, [1]))
def get_random_key(max_key):
return tf.random.uniform(shape=[1], minval=0, maxval=max_key, dtype=tf.int32)
list_of_strings_type = tff.TensorType(tf.string, [None])
get_size = tff.tf_computation(lambda x: tf.size(x))
select_fn = tff.tf_computation(lambda val, index: tf.gather(val, index))
@tff.tf_computation(tff.SequenceType(tf.string))
@tff.check_returns_type(tf.string)
def get_last_element(sequence):
return sequence.reduce('', lambda _initial_state, val: val)
@tff.federated_computation(tff.type_at_server(list_of_strings_type))
def broadcast_random_element(list_of_strings_at_server):
max_key_at_server = tff.federated_map(get_size, list_of_strings_at_server)
max_key_at_clients = tff.federated_broadcast(max_key_at_server)
key_at_clients = tff.federated_map(get_random_key, max_key_at_clients)
random_string_sequence_at_clients = tff.federated_select(
key_at_clients, max_key_at_server, list_of_strings_at_server, select_fn)
# Even though we only passed in a single key, `federated_select` returns a
# sequence for each client. We only care about the last (and only) element.
random_string_at_clients = tff.federated_map(get_last_element, random_string_sequence_at_clients)
return random_string_at_clients
Desde nuestra broadcast_random_element
función no toma en cualquier dato colocado en el cliente, tenemos que configurar la simulación en tiempo de ejecución TFF con un número predeterminado de clientes para utilizar:
tff.backends.native.set_local_python_execution_context(default_num_clients=3)
Entonces podemos simular la selección. Podemos cambiar default_num_clients
anteriores y la lista de cadenas a continuación para generar resultados diferentes, o simplemente volver a ejecutar el cálculo para generar salidas aleatorias diferentes.
broadcast_random_element(tf.convert_to_tensor(['foo', 'bar', 'baz']))