הצג באתר TensorFlow.org | הפעל בגוגל קולאב | הצג ב-GitHub | הורד מחברת | Keras פונקציונלי API |
מבוא
ברוכים הבאים אל הדרכת הרכב מודל יערות החלטת TensorFlow (TF-DF). מופעים מחברת זו אותך איך להלחין יער החלטה מספר מודלי רשת עצביים יחד באמצעות שכבה מקדימה משותפת ואת API פונקציונלי Keras .
אולי תרצה לחבר מודלים יחד כדי לשפר ביצועים חזויים (הרכבה), כדי להפיק את המיטב מטכנולוגיות מידול שונות (הרכבת מודלים הטרוגנית), לאמן חלקים שונים של המודל על מערכי נתונים שונים (למשל אימון מקדים), או ליצור מודל מוערם (למשל, מודל פועל על פי התחזיות של מודל אחר).
מדריך זה מכסה מקרה שימוש מתקדם של הרכב מודלים באמצעות ה-API הפונקציונלי. ניתן למצוא דוגמאות לתרחישים פשוט של רכב מודל של "תכונת עיבוד המקדימה" קטע זה הדרכה וב "באמצעות טקסט pretrained הטבעה" הקטע זה הדרכה .
להלן מבנה הדגם שתבנה:
!pip install graphviz -U --quiet
from graphviz import Source
Source("""
digraph G {
raw_data [label="Input features"];
preprocess_data [label="Learnable NN pre-processing", shape=rect];
raw_data -> preprocess_data
subgraph cluster_0 {
color=grey;
a1[label="NN layer", shape=rect];
b1[label="NN layer", shape=rect];
a1 -> b1;
label = "Model #1";
}
subgraph cluster_1 {
color=grey;
a2[label="NN layer", shape=rect];
b2[label="NN layer", shape=rect];
a2 -> b2;
label = "Model #2";
}
subgraph cluster_2 {
color=grey;
a3[label="Decision Forest", shape=rect];
label = "Model #3";
}
subgraph cluster_3 {
color=grey;
a4[label="Decision Forest", shape=rect];
label = "Model #4";
}
preprocess_data -> a1;
preprocess_data -> a2;
preprocess_data -> a3;
preprocess_data -> a4;
b1 -> aggr;
b2 -> aggr;
a3 -> aggr;
a4 -> aggr;
aggr [label="Aggregation (mean)", shape=rect]
aggr -> predictions
}
""")
לדגם המורכב שלך יש שלושה שלבים:
- השלב הראשון הוא שכבת עיבוד מקדים המורכבת מרשת עצבית ומשותפת לכל הדגמים בשלב הבא. בפועל, שכבת עיבוד מקדים כזו יכולה להיות הטמעה מאומנת מראש לכוונון עדין, או רשת עצבית מאותחל אקראי.
- השלב השני הוא אנסמבל של שני דגמי יער החלטות ושני מודלים של רשתות עצביות.
- השלב האחרון עושה ממוצע של התחזיות של המודלים בשלב השני. הוא אינו מכיל משקלים שניתן ללמוד.
הרשתות העצביות מאומנות באמצעות אלגוריתם backpropagation ממוצא שיפוע. לאלגוריתם זה שני מאפיינים חשובים: (1) ניתן לאמן את השכבה של הרשת העצבית אם היא מקבלת שיפוע הפסד (ליתר דיוק, שיפוע ההפסד בהתאם לפלט השכבה), ו-(2) האלגוריתם "משדר" את שיפוע הפסד מהפלט של השכבה לקלט השכבה (זהו "כלל השרשרת"). משתי הסיבות הללו, Backpropagation יכול לאמן יחד שכבות מרובות של רשתות עצביות המוערמות זו על גבי זו.
בדוגמה זו, ביערות ההחלטה מאומנים עם Random Forest אלגוריתם (RF). בניגוד ל-Backpropagation, האימון של RF אינו "משדר" את שיפוע ההפסד אל מהפלט שלו לקלט שלו. מסיבה זו, לא ניתן להשתמש באלגוריתם ה-RF הקלאסי כדי לאמן או לכוונן רשת עצבית מתחת. במילים אחרות, לא ניתן להשתמש בשלבי "יער ההחלטה" כדי להכשיר את "גוש העיבוד המוקדם של NN שניתן ללמוד".
- אימון שלב העיבוד המקדים ורשתות עצביות.
- אימון שלבי יער ההחלטה.
התקן את TensorFlow Decision Forests
התקן את TF-DF על ידי הפעלת התא הבא.
pip install tensorflow_decision_forests -U --quiet
תקן Wurlitzer להראות את יומני אימונים המפורטים. זה נחוץ רק במחברות.
pip install wurlitzer -U --quiet
ייבוא ספריות
import tensorflow_decision_forests as tfdf
import os
import numpy as np
import pandas as pd
import tensorflow as tf
import math
import matplotlib.pyplot as plt
try:
from wurlitzer import sys_pipes
except:
from colabtools.googlelog import CaptureLog as sys_pipes
from IPython.core.magic import register_line_magic
from IPython.display import Javascript
WARNING:root:Failure to load the custom c++ tensorflow ops. This error is likely caused the version of TensorFlow and TensorFlow Decision Forests are not compatible. WARNING:root:TF Parameter Server distributed training not available.
מערך נתונים
תשתמש במערך נתונים סינתטי פשוט במדריך זה כדי להקל על פירוש המודל הסופי.
def make_dataset(num_examples, num_features, seed=1234):
np.random.seed(seed)
features = np.random.uniform(-1, 1, size=(num_examples, num_features))
noise = np.random.uniform(size=(num_examples))
left_side = np.sqrt(
np.sum(np.multiply(np.square(features[:, 0:2]), [1, 2]), axis=1))
right_side = features[:, 2] * 0.7 + np.sin(
features[:, 3] * 10) * 0.5 + noise * 0.0 + 0.5
labels = left_side <= right_side
return features, labels.astype(int)
צור כמה דוגמאות:
make_dataset(num_examples=5, num_features=4)
(array([[-0.6169611 , 0.24421754, -0.12454452, 0.57071717], [ 0.55995162, -0.45481479, -0.44707149, 0.60374436], [ 0.91627871, 0.75186527, -0.28436546, 0.00199025], [ 0.36692587, 0.42540405, -0.25949849, 0.12239237], [ 0.00616633, -0.9724631 , 0.54565324, 0.76528238]]), array([0, 0, 0, 1, 0]))
אתה יכול גם לשרטט אותם כדי לקבל מושג על הדפוס הסינתטי:
plot_features, plot_label = make_dataset(num_examples=50000, num_features=4)
plt.rcParams["figure.figsize"] = [8, 8]
common_args = dict(c=plot_label, s=1.0, alpha=0.5)
plt.subplot(2, 2, 1)
plt.scatter(plot_features[:, 0], plot_features[:, 1], **common_args)
plt.subplot(2, 2, 2)
plt.scatter(plot_features[:, 1], plot_features[:, 2], **common_args)
plt.subplot(2, 2, 3)
plt.scatter(plot_features[:, 0], plot_features[:, 2], **common_args)
plt.subplot(2, 2, 4)
plt.scatter(plot_features[:, 0], plot_features[:, 3], **common_args)
<matplotlib.collections.PathCollection at 0x7f6b78d20e90>
שימו לב שתבנית זו חלקה ואינה מיושרת לציר. זה יתרון למודלים של רשתות עצביות. הסיבה לכך היא שקל יותר לרשת עצבית מאשר לעץ החלטות להיות בעל גבולות החלטה עגולים ולא מיושרים.
מצד שני, נאמן את המודל על מערכי נתונים קטנים עם 2500 דוגמאות. זה יתרון למודלים של יער ההחלטה. הסיבה לכך היא שיערות החלטה יעילים הרבה יותר, תוך שימוש בכל המידע הזמין מהדוגמאות (יערות החלטה הם "יעילים לדוגמא").
האנסמבל שלנו של רשתות עצבים ויערות החלטה ישתמשו בטוב משני העולמות.
בואו ליצור רכבת ולבדוק tf.data.Dataset
:
def make_tf_dataset(batch_size=64, **args):
features, labels = make_dataset(**args)
return tf.data.Dataset.from_tensor_slices(
(features, labels)).batch(batch_size)
num_features = 10
train_dataset = make_tf_dataset(
num_examples=2500, num_features=num_features, batch_size=64, seed=1234)
test_dataset = make_tf_dataset(
num_examples=10000, num_features=num_features, batch_size=64, seed=5678)
מבנה הדגם
הגדר את מבנה המודל באופן הבא:
# Input features.
raw_features = tf.keras.layers.Input(shape=(num_features,))
# Stage 1
# =======
# Common learnable pre-processing
preprocessor = tf.keras.layers.Dense(10, activation=tf.nn.relu6)
preprocess_features = preprocessor(raw_features)
# Stage 2
# =======
# Model #1: NN
m1_z1 = tf.keras.layers.Dense(5, activation=tf.nn.relu6)(preprocess_features)
m1_pred = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)(m1_z1)
# Model #2: NN
m2_z1 = tf.keras.layers.Dense(5, activation=tf.nn.relu6)(preprocess_features)
m2_pred = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)(m2_z1)
def seed_advanced_argument(seed):
"""Create a seed argument for a TF-DF model.
TODO(gbm): Surface the "seed" argument to the model constructor directly.
"""
return tfdf.keras.AdvancedArguments(
yggdrasil_training_config=tfdf.keras.core.YggdrasilTrainingConfig(
random_seed=seed))
# Model #3: DF
model_3 = tfdf.keras.RandomForestModel(
num_trees=1000, advanced_arguments=seed_advanced_argument(1234))
m3_pred = model_3(preprocess_features)
# Model #4: DF
model_4 = tfdf.keras.RandomForestModel(
num_trees=1000,
#split_axis="SPARSE_OBLIQUE", # Uncomment this line to increase the quality of this model
advanced_arguments=seed_advanced_argument(4567))
m4_pred = model_4(preprocess_features)
# Since TF-DF uses deterministic learning algorithms, you should set the model's
# training seed to different values otherwise both
# `tfdf.keras.RandomForestModel` will be exactly the same.
# Stage 3
# =======
mean_nn_only = tf.reduce_mean(tf.stack([m1_pred, m2_pred], axis=0), axis=0)
mean_nn_and_df = tf.reduce_mean(
tf.stack([m1_pred, m2_pred, m3_pred, m4_pred], axis=0), axis=0)
# Keras Models
# ============
ensemble_nn_only = tf.keras.models.Model(raw_features, mean_nn_only)
ensemble_nn_and_df = tf.keras.models.Model(raw_features, mean_nn_and_df)
WARNING:tensorflow:AutoGraph could not transform <bound method Socket.send of <zmq.Socket(zmq.PUSH) at 0x7f6ba21b62f0>> and will run it as-is. Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING:absl:The model was called directly (i.e. using `model(data)` instead of using `model.predict(data)`) before being trained. The model will only return zeros until trained. The output shape might change after training Tensor("inputs:0", shape=(None, 10), dtype=float32) WARNING:tensorflow:AutoGraph could not transform <bound method Socket.send of <zmq.Socket(zmq.PUSH) at 0x7f6ba21b62f0>> and will run it as-is. Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING: AutoGraph could not transform <bound method Socket.send of <zmq.Socket(zmq.PUSH) at 0x7f6ba21b62f0>> and will run it as-is. Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING:absl:The model was called directly (i.e. using `model(data)` instead of using `model.predict(data)`) before being trained. The model will only return zeros until trained. The output shape might change after training Tensor("inputs:0", shape=(None, 10), dtype=float32)
לפני שתכשיר את המודל, תוכל לשרטט אותו כדי לבדוק אם הוא דומה לתרשים הראשוני.
from keras.utils.vis_utils import plot_model
plot_model(ensemble_nn_and_df, to_file="/tmp/model.png", show_shapes=True)
אימון דוגמניות
תחילה אמן את העיבוד המקדים ושתי שכבות הרשת העצבית באמצעות אלגוריתם ההפצה האחורית.
%%time
ensemble_nn_only.compile(
optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.BinaryCrossentropy(),
metrics=["accuracy"])
ensemble_nn_only.fit(train_dataset, epochs=20, validation_data=test_dataset)
Epoch 1/20 40/40 [==============================] - 1s 13ms/step - loss: 0.6115 - accuracy: 0.7308 - val_loss: 0.5857 - val_accuracy: 0.7407 Epoch 2/20 40/40 [==============================] - 0s 9ms/step - loss: 0.5645 - accuracy: 0.7484 - val_loss: 0.5487 - val_accuracy: 0.7391 Epoch 3/20 40/40 [==============================] - 0s 9ms/step - loss: 0.5310 - accuracy: 0.7496 - val_loss: 0.5237 - val_accuracy: 0.7392 Epoch 4/20 40/40 [==============================] - 0s 9ms/step - loss: 0.5074 - accuracy: 0.7500 - val_loss: 0.5055 - val_accuracy: 0.7391 Epoch 5/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4887 - accuracy: 0.7496 - val_loss: 0.4901 - val_accuracy: 0.7397 Epoch 6/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4725 - accuracy: 0.7520 - val_loss: 0.4763 - val_accuracy: 0.7440 Epoch 7/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4585 - accuracy: 0.7584 - val_loss: 0.4644 - val_accuracy: 0.7542 Epoch 8/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4470 - accuracy: 0.7700 - val_loss: 0.4544 - val_accuracy: 0.7682 Epoch 9/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4374 - accuracy: 0.7804 - val_loss: 0.4462 - val_accuracy: 0.7789 Epoch 10/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4297 - accuracy: 0.7848 - val_loss: 0.4395 - val_accuracy: 0.7865 Epoch 11/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4232 - accuracy: 0.7904 - val_loss: 0.4339 - val_accuracy: 0.7933 Epoch 12/20 40/40 [==============================] - 0s 10ms/step - loss: 0.4176 - accuracy: 0.7952 - val_loss: 0.4289 - val_accuracy: 0.7963 Epoch 13/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4126 - accuracy: 0.7992 - val_loss: 0.4243 - val_accuracy: 0.8010 Epoch 14/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4078 - accuracy: 0.8052 - val_loss: 0.4199 - val_accuracy: 0.8033 Epoch 15/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4029 - accuracy: 0.8096 - val_loss: 0.4155 - val_accuracy: 0.8067 Epoch 16/20 40/40 [==============================] - 0s 9ms/step - loss: 0.3981 - accuracy: 0.8132 - val_loss: 0.4109 - val_accuracy: 0.8099 Epoch 17/20 40/40 [==============================] - 0s 9ms/step - loss: 0.3932 - accuracy: 0.8152 - val_loss: 0.4061 - val_accuracy: 0.8129 Epoch 18/20 40/40 [==============================] - 0s 9ms/step - loss: 0.3883 - accuracy: 0.8208 - val_loss: 0.4012 - val_accuracy: 0.8149 Epoch 19/20 40/40 [==============================] - 0s 9ms/step - loss: 0.3832 - accuracy: 0.8232 - val_loss: 0.3963 - val_accuracy: 0.8168 Epoch 20/20 40/40 [==============================] - 0s 10ms/step - loss: 0.3783 - accuracy: 0.8276 - val_loss: 0.3912 - val_accuracy: 0.8203 CPU times: user 12.1 s, sys: 2.14 s, total: 14.2 s Wall time: 8.54 s <keras.callbacks.History at 0x7f6b181d7450>
הבה נעריך את העיבוד המקדים ואת החלק עם שתי הרשתות העצביות בלבד:
evaluation_nn_only = ensemble_nn_only.evaluate(test_dataset, return_dict=True)
print("Accuracy (NN #1 and #2 only): ", evaluation_nn_only["accuracy"])
print("Loss (NN #1 and #2 only): ", evaluation_nn_only["loss"])
157/157 [==============================] - 0s 2ms/step - loss: 0.3912 - accuracy: 0.8203 Accuracy (NN #1 and #2 only): 0.8202999830245972 Loss (NN #1 and #2 only): 0.39124569296836853
בואו נאמן את שני מרכיבי ה-Decision Forest (בזה אחר זה).
%%time
train_dataset_with_preprocessing = train_dataset.map(lambda x,y: (preprocessor(x), y))
test_dataset_with_preprocessing = test_dataset.map(lambda x,y: (preprocessor(x), y))
model_3.fit(train_dataset_with_preprocessing)
model_4.fit(train_dataset_with_preprocessing)
WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b86bc3dd0> and will run it as-is. Cause: could not parse the source code of <function <lambda> at 0x7f6b86bc3dd0>: no matching AST found among candidates: To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b86bc3dd0> and will run it as-is. Cause: could not parse the source code of <function <lambda> at 0x7f6b86bc3dd0>: no matching AST found among candidates: To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING: AutoGraph could not transform <function <lambda> at 0x7f6b86bc3dd0> and will run it as-is. Cause: could not parse the source code of <function <lambda> at 0x7f6b86bc3dd0>: no matching AST found among candidates: To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b783a9320> and will run it as-is. Cause: could not parse the source code of <function <lambda> at 0x7f6b783a9320>: no matching AST found among candidates: To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b783a9320> and will run it as-is. Cause: could not parse the source code of <function <lambda> at 0x7f6b783a9320>: no matching AST found among candidates: To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING: AutoGraph could not transform <function <lambda> at 0x7f6b783a9320> and will run it as-is. Cause: could not parse the source code of <function <lambda> at 0x7f6b783a9320>: no matching AST found among candidates: To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert 23/40 [================>.............] - ETA: 0s [INFO kernel.cc:736] Start Yggdrasil model training [INFO kernel.cc:737] Collect training examples [INFO kernel.cc:392] Number of batches: 40 [INFO kernel.cc:393] Number of examples: 2500 [INFO kernel.cc:759] Dataset: Number of records: 2500 Number of columns: 11 Number of columns by type: NUMERICAL: 10 (90.9091%) CATEGORICAL: 1 (9.09091%) Columns: NUMERICAL: 10 (90.9091%) 0: "data:0.0" NUMERICAL mean:0.356465 min:0 max:2.37352 sd:0.451418 1: "data:0.1" NUMERICAL mean:0.392088 min:0 max:2.3411 sd:0.470499 2: "data:0.2" NUMERICAL mean:0.382386 min:0 max:2.11809 sd:0.483672 3: "data:0.3" NUMERICAL mean:0.290395 min:0 max:2.27481 sd:0.400102 4: "data:0.4" NUMERICAL mean:0.210684 min:0 max:1.35897 sd:0.281379 5: "data:0.5" NUMERICAL mean:0.4008 min:0 max:2.06561 sd:0.453018 6: "data:0.6" NUMERICAL mean:0.289166 min:0 max:2.0263 sd:0.407337 7: "data:0.7" NUMERICAL mean:0.277971 min:0 max:1.77561 sd:0.363215 8: "data:0.8" NUMERICAL mean:0.41254 min:0 max:2.79804 sd:0.553333 9: "data:0.9" NUMERICAL mean:0.197082 min:0 max:1.60773 sd:0.298194 CATEGORICAL: 1 (9.09091%) 10: "__LABEL" CATEGORICAL integerized vocab-size:3 no-ood-item Terminology: nas: Number of non-available (i.e. missing) values. ood: Out of dictionary. manually-defined: Attribute which type is manually defined by the user i.e. the type was not automatically inferred. tokenized: The attribute value is obtained through tokenization. has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string. vocab-size: Number of unique values. [INFO kernel.cc:762] Configure learner [INFO kernel.cc:787] Training config: learner: "RANDOM_FOREST" features: "data:0\\.0" features: "data:0\\.1" features: "data:0\\.2" features: "data:0\\.3" features: "data:0\\.4" features: "data:0\\.5" features: "data:0\\.6" features: "data:0\\.7" features: "data:0\\.8" features: "data:0\\.9" label: "__LABEL" task: CLASSIFICATION random_seed: 1234 [yggdrasil_decision_forests.model.random_forest.proto.random_forest_config] { num_trees: 1000 decision_tree { max_depth: 16 min_examples: 5 in_split_min_examples_check: true missing_value_policy: GLOBAL_IMPUTATION allow_na_conditions: false categorical_set_greedy_forward { sampling: 0.1 max_num_items: -1 min_item_frequency: 1 } growing_strategy_local { } categorical { cart { } } num_candidate_attributes_ratio: -1 axis_aligned_split { } internal { sorting_strategy: PRESORTED } } winner_take_all_inference: true compute_oob_performances: true compute_oob_variable_importances: false adapt_bootstrap_size_ratio_for_maximum_training_duration: false } [INFO kernel.cc:790] Deployment config: num_threads: 6 [INFO kernel.cc:817] Train model [INFO random_forest.cc:315] Training random forest on 2500 example(s) and 10 feature(s). [INFO random_forest.cc:628] Training of tree 1/1000 (tree index:1) done accuracy:0.781996 logloss:7.85767 [INFO random_forest.cc:628] Training of tree 11/1000 (tree index:8) done accuracy:0.79895 logloss:2.7263 [INFO random_forest.cc:628] Training of tree 21/1000 (tree index:20) done accuracy:0.8012 logloss:1.26831 [INFO random_forest.cc:628] Training of tree 31/1000 (tree index:30) done accuracy:0.8076 logloss:0.898323 [INFO random_forest.cc:628] Training of tree 41/1000 (tree index:37) done accuracy:0.8084 logloss:0.736323 [INFO random_forest.cc:628] Training of tree 51/1000 (tree index:51) done accuracy:0.8072 logloss:0.612984 [INFO random_forest.cc:628] Training of tree 61/1000 (tree index:63) done accuracy:0.8104 logloss:0.55782 [INFO random_forest.cc:628] Training of tree 71/1000 (tree index:69) done accuracy:0.81 logloss:0.544938 [INFO random_forest.cc:628] Training of tree 81/1000 (tree index:80) done accuracy:0.814 logloss:0.532167 [INFO random_forest.cc:628] Training of tree 91/1000 (tree index:89) done accuracy:0.8144 logloss:0.530892 [INFO random_forest.cc:628] Training of tree 101/1000 (tree index:100) done accuracy:0.814 logloss:0.516588 [INFO random_forest.cc:628] Training of tree 111/1000 (tree index:108) done accuracy:0.8128 logloss:0.490739 [INFO random_forest.cc:628] Training of tree 121/1000 (tree index:118) done accuracy:0.8124 logloss:0.490544 [INFO random_forest.cc:628] Training of tree 131/1000 (tree index:134) done accuracy:0.8112 logloss:0.451653 [INFO random_forest.cc:628] Training of tree 141/1000 (tree index:140) done accuracy:0.8136 logloss:0.437757 [INFO random_forest.cc:628] Training of tree 151/1000 (tree index:150) done accuracy:0.8144 logloss:0.424328 [INFO random_forest.cc:628] Training of tree 161/1000 (tree index:159) done accuracy:0.8132 logloss:0.42426 [INFO random_forest.cc:628] Training of tree 171/1000 (tree index:168) done accuracy:0.814 logloss:0.411061 [INFO random_forest.cc:628] Training of tree 181/1000 (tree index:184) done accuracy:0.8136 logloss:0.411324 [INFO random_forest.cc:628] Training of tree 191/1000 (tree index:190) done accuracy:0.8148 logloss:0.410002 [INFO random_forest.cc:628] Training of tree 201/1000 (tree index:200) done accuracy:0.8144 logloss:0.409526 [INFO random_forest.cc:628] Training of tree 211/1000 (tree index:208) done accuracy:0.814 logloss:0.40944 [INFO random_forest.cc:628] Training of tree 221/1000 (tree index:218) done accuracy:0.8152 logloss:0.409039 [INFO random_forest.cc:628] Training of tree 231/1000 (tree index:234) done accuracy:0.8144 logloss:0.409254 [INFO random_forest.cc:628] Training of tree 241/1000 (tree index:242) done accuracy:0.8144 logloss:0.40879 [INFO random_forest.cc:628] Training of tree 251/1000 (tree index:251) done accuracy:0.8152 logloss:0.395703 [INFO random_forest.cc:628] Training of tree 261/1000 (tree index:259) done accuracy:0.8168 logloss:0.395747 [INFO random_forest.cc:628] Training of tree 271/1000 (tree index:268) done accuracy:0.814 logloss:0.394959 [INFO random_forest.cc:628] Training of tree 281/1000 (tree index:283) done accuracy:0.8148 logloss:0.395202 [INFO random_forest.cc:628] Training of tree 291/1000 (tree index:292) done accuracy:0.8136 logloss:0.395536 [INFO random_forest.cc:628] Training of tree 301/1000 (tree index:300) done accuracy:0.8128 logloss:0.39472 [INFO random_forest.cc:628] Training of tree 311/1000 (tree index:308) done accuracy:0.8124 logloss:0.394763 [INFO random_forest.cc:628] Training of tree 321/1000 (tree index:318) done accuracy:0.8132 logloss:0.394732 [INFO random_forest.cc:628] Training of tree 331/1000 (tree index:334) done accuracy:0.8136 logloss:0.394822 [INFO random_forest.cc:628] Training of tree 341/1000 (tree index:343) done accuracy:0.812 logloss:0.395051 [INFO random_forest.cc:628] Training of tree 351/1000 (tree index:350) done accuracy:0.8132 logloss:0.39492 [INFO random_forest.cc:628] Training of tree 361/1000 (tree index:358) done accuracy:0.8132 logloss:0.395054 [INFO random_forest.cc:628] Training of tree 371/1000 (tree index:368) done accuracy:0.812 logloss:0.395588 [INFO random_forest.cc:628] Training of tree 381/1000 (tree index:384) done accuracy:0.8104 logloss:0.395576 [INFO random_forest.cc:628] Training of tree 391/1000 (tree index:390) done accuracy:0.8132 logloss:0.395713 [INFO random_forest.cc:628] Training of tree 401/1000 (tree index:400) done accuracy:0.8088 logloss:0.383693 [INFO random_forest.cc:628] Training of tree 411/1000 (tree index:408) done accuracy:0.8088 logloss:0.383575 [INFO random_forest.cc:628] Training of tree 421/1000 (tree index:417) done accuracy:0.8096 logloss:0.383934 [INFO random_forest.cc:628] Training of tree 431/1000 (tree index:434) done accuracy:0.81 logloss:0.384001 [INFO random_forest.cc:628] Training of tree 441/1000 (tree index:442) done accuracy:0.808 logloss:0.384118 [INFO random_forest.cc:628] Training of tree 451/1000 (tree index:450) done accuracy:0.8096 logloss:0.384076 [INFO random_forest.cc:628] Training of tree 461/1000 (tree index:458) done accuracy:0.8104 logloss:0.383208 [INFO random_forest.cc:628] Training of tree 471/1000 (tree index:468) done accuracy:0.812 logloss:0.383298 [INFO random_forest.cc:628] Training of tree 481/1000 (tree index:482) done accuracy:0.81 logloss:0.38358 [INFO random_forest.cc:628] Training of tree 491/1000 (tree index:492) done accuracy:0.812 logloss:0.383453 [INFO random_forest.cc:628] Training of tree 501/1000 (tree index:500) done accuracy:0.8128 logloss:0.38317 [INFO random_forest.cc:628] Training of tree 511/1000 (tree index:508) done accuracy:0.812 logloss:0.383369 [INFO random_forest.cc:628] Training of tree 521/1000 (tree index:518) done accuracy:0.8132 logloss:0.383461 [INFO random_forest.cc:628] Training of tree 531/1000 (tree index:532) done accuracy:0.8124 logloss:0.38342 [INFO random_forest.cc:628] Training of tree 541/1000 (tree index:542) done accuracy:0.8128 logloss:0.383376 [INFO random_forest.cc:628] Training of tree 551/1000 (tree index:550) done accuracy:0.8128 logloss:0.383663 [INFO random_forest.cc:628] Training of tree 561/1000 (tree index:558) done accuracy:0.812 logloss:0.383574 [INFO random_forest.cc:628] Training of tree 571/1000 (tree index:568) done accuracy:0.8116 logloss:0.383529 [INFO random_forest.cc:628] Training of tree 581/1000 (tree index:580) done accuracy:0.8128 logloss:0.383624 [INFO random_forest.cc:628] Training of tree 591/1000 (tree index:592) done accuracy:0.814 logloss:0.383599 [INFO random_forest.cc:628] Training of tree 601/1000 (tree index:601) done accuracy:0.8148 logloss:0.383524 [INFO random_forest.cc:628] Training of tree 611/1000 (tree index:608) done accuracy:0.8156 logloss:0.383555 [INFO random_forest.cc:628] Training of tree 621/1000 (tree index:619) done accuracy:0.8132 logloss:0.382847 [INFO random_forest.cc:628] Training of tree 631/1000 (tree index:632) done accuracy:0.8124 logloss:0.382872 [INFO random_forest.cc:628] Training of tree 641/1000 (tree index:641) done accuracy:0.8144 logloss:0.382728 [INFO random_forest.cc:628] Training of tree 651/1000 (tree index:648) done accuracy:0.8132 logloss:0.382554 [INFO random_forest.cc:628] Training of tree 661/1000 (tree index:658) done accuracy:0.8128 logloss:0.382705 [INFO random_forest.cc:628] Training of tree 671/1000 (tree index:670) done accuracy:0.8136 logloss:0.38288 [INFO random_forest.cc:628] Training of tree 681/1000 (tree index:682) done accuracy:0.8152 logloss:0.383007 [INFO random_forest.cc:628] Training of tree 691/1000 (tree index:690) done accuracy:0.8144 logloss:0.382971 [INFO random_forest.cc:628] Training of tree 701/1000 (tree index:698) done accuracy:0.8152 logloss:0.382869 [INFO random_forest.cc:628] Training of tree 711/1000 (tree index:708) done accuracy:0.8152 logloss:0.382792 [INFO random_forest.cc:628] Training of tree 721/1000 (tree index:722) done accuracy:0.8136 logloss:0.38274 [INFO random_forest.cc:628] Training of tree 731/1000 (tree index:732) done accuracy:0.8144 logloss:0.38268 [INFO random_forest.cc:628] Training of tree 741/1000 (tree index:740) done accuracy:0.814 logloss:0.382835 [INFO random_forest.cc:628] Training of tree 751/1000 (tree index:751) done accuracy:0.8152 logloss:0.38297 [INFO random_forest.cc:628] Training of tree 761/1000 (tree index:758) done accuracy:0.8152 logloss:0.382917 [INFO random_forest.cc:628] Training of tree 771/1000 (tree index:770) done accuracy:0.8156 logloss:0.370596 [INFO random_forest.cc:628] Training of tree 781/1000 (tree index:782) done accuracy:0.816 logloss:0.370687 [INFO random_forest.cc:628] Training of tree 791/1000 (tree index:789) done accuracy:0.8164 logloss:0.37068 [INFO random_forest.cc:628] Training of tree 801/1000 (tree index:798) done accuracy:0.8172 logloss:0.370535 [INFO random_forest.cc:628] Training of tree 811/1000 (tree index:809) done accuracy:0.816 logloss:0.370674 [INFO random_forest.cc:628] Training of tree 821/1000 (tree index:821) done accuracy:0.816 logloss:0.370929 [INFO random_forest.cc:628] Training of tree 831/1000 (tree index:829) done accuracy:0.8148 logloss:0.370904 [INFO random_forest.cc:628] Training of tree 841/1000 (tree index:841) done accuracy:0.8164 logloss:0.371016 [INFO random_forest.cc:628] Training of tree 851/1000 (tree index:849) done accuracy:0.8168 logloss:0.370914 [INFO random_forest.cc:628] Training of tree 861/1000 (tree index:860) done accuracy:0.8164 logloss:0.371043 [INFO random_forest.cc:628] Training of tree 871/1000 (tree index:871) done accuracy:0.8168 logloss:0.371094 [INFO random_forest.cc:628] Training of tree 881/1000 (tree index:878) done accuracy:0.8152 logloss:0.371054 [INFO random_forest.cc:628] Training of tree 891/1000 (tree index:888) done accuracy:0.8156 logloss:0.370908 [INFO random_forest.cc:628] Training of tree 901/1000 (tree index:900) done accuracy:0.8156 logloss:0.370831 [INFO random_forest.cc:628] Training of tree 911/1000 (tree index:910) done accuracy:0.8152 logloss:0.370775 [INFO random_forest.cc:628] Training of tree 921/1000 (tree index:922) done accuracy:0.814 logloss:0.370804 [INFO random_forest.cc:628] Training of tree 931/1000 (tree index:929) done accuracy:0.8148 logloss:0.370495 [INFO random_forest.cc:628] Training of tree 941/1000 (tree index:941) done accuracy:0.816 logloss:0.370443 [INFO random_forest.cc:628] Training of tree 951/1000 (tree index:948) done accuracy:0.8156 logloss:0.370486 [INFO random_forest.cc:628] Training of tree 961/1000 (tree index:960) done accuracy:0.8152 logloss:0.370519 [INFO random_forest.cc:628] Training of tree 971/1000 (tree index:971) done accuracy:0.8144 logloss:0.370543 [INFO random_forest.cc:628] Training of tree 981/1000 (tree index:983) done accuracy:0.8144 logloss:0.370629 [INFO random_forest.cc:628] Training of tree 991/1000 (tree index:991) done accuracy:0.814 logloss:0.370625 [INFO random_forest.cc:628] Training of tree 1000/1000 (tree index:998) done accuracy:0.8144 logloss:0.370667 [INFO random_forest.cc:696] Final OOB metrics: accuracy:0.8144 logloss:0.370667 [INFO kernel.cc:828] Export model in log directory: /tmp/tmp9izglk4r [INFO kernel.cc:836] Save model in resources [INFO kernel.cc:988] Loading model from path 40/40 [==============================] - 6s 66ms/step [INFO decision_forest.cc:590] Model loaded with 1000 root(s), 324508 node(s), and 10 input feature(s). [INFO abstract_model.cc:993] Engine "RandomForestOptPred" built [INFO kernel.cc:848] Use fast generic engine 24/40 [=================>............] - ETA: 0s [INFO kernel.cc:736] Start Yggdrasil model training [INFO kernel.cc:737] Collect training examples [INFO kernel.cc:392] Number of batches: 40 [INFO kernel.cc:393] Number of examples: 2500 [INFO kernel.cc:759] Dataset: Number of records: 2500 Number of columns: 11 Number of columns by type: NUMERICAL: 10 (90.9091%) CATEGORICAL: 1 (9.09091%) Columns: NUMERICAL: 10 (90.9091%) 0: "data:0.0" NUMERICAL mean:0.356465 min:0 max:2.37352 sd:0.451418 1: "data:0.1" NUMERICAL mean:0.392088 min:0 max:2.3411 sd:0.470499 2: "data:0.2" NUMERICAL mean:0.382386 min:0 max:2.11809 sd:0.483672 3: "data:0.3" NUMERICAL mean:0.290395 min:0 max:2.27481 sd:0.400102 4: "data:0.4" NUMERICAL mean:0.210684 min:0 max:1.35897 sd:0.281379 5: "data:0.5" NUMERICAL mean:0.4008 min:0 max:2.06561 sd:0.453018 6: "data:0.6" NUMERICAL mean:0.289166 min:0 max:2.0263 sd:0.407337 7: "data:0.7" NUMERICAL mean:0.277971 min:0 max:1.77561 sd:0.363215 8: "data:0.8" NUMERICAL mean:0.41254 min:0 max:2.79804 sd:0.553333 9: "data:0.9" NUMERICAL mean:0.197082 min:0 max:1.60773 sd:0.298194 CATEGORICAL: 1 (9.09091%) 10: "__LABEL" CATEGORICAL integerized vocab-size:3 no-ood-item Terminology: nas: Number of non-available (i.e. missing) values. ood: Out of dictionary. manually-defined: Attribute which type is manually defined by the user i.e. the type was not automatically inferred. tokenized: The attribute value is obtained through tokenization. has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string. vocab-size: Number of unique values. [INFO kernel.cc:762] Configure learner [INFO kernel.cc:787] Training config: learner: "RANDOM_FOREST" features: "data:0\\.0" features: "data:0\\.1" features: "data:0\\.2" features: "data:0\\.3" features: "data:0\\.4" features: "data:0\\.5" features: "data:0\\.6" features: "data:0\\.7" features: "data:0\\.8" features: "data:0\\.9" label: "__LABEL" task: CLASSIFICATION random_seed: 4567 [yggdrasil_decision_forests.model.random_forest.proto.random_forest_config] { num_trees: 1000 decision_tree { max_depth: 16 min_examples: 5 in_split_min_examples_check: true missing_value_policy: GLOBAL_IMPUTATION allow_na_conditions: false categorical_set_greedy_forward { sampling: 0.1 max_num_items: -1 min_item_frequency: 1 } growing_strategy_local { } categorical { cart { } } num_candidate_attributes_ratio: -1 axis_aligned_split { } internal { sorting_strategy: PRESORTED } } winner_take_all_inference: true compute_oob_performances: true compute_oob_variable_importances: false adapt_bootstrap_size_ratio_for_maximum_training_duration: false } [INFO kernel.cc:790] Deployment config: num_threads: 6 [INFO kernel.cc:817] Train model [INFO random_forest.cc:315] Training random forest on 2500 example(s) and 10 feature(s). [INFO random_forest.cc:628] Training of tree 1/1000 (tree index:1) done accuracy:0.783262 logloss:7.81204 [INFO random_forest.cc:628] Training of tree 11/1000 (tree index:9) done accuracy:0.801127 logloss:2.73187 [INFO random_forest.cc:628] Training of tree 21/1000 (tree index:19) done accuracy:0.811449 logloss:1.1286 [INFO random_forest.cc:628] Training of tree 31/1000 (tree index:32) done accuracy:0.8132 logloss:0.910787 [INFO random_forest.cc:628] Training of tree 41/1000 (tree index:42) done accuracy:0.812 logloss:0.745694 [INFO random_forest.cc:628] Training of tree 51/1000 (tree index:48) done accuracy:0.8144 logloss:0.690226 [INFO random_forest.cc:628] Training of tree 61/1000 (tree index:59) done accuracy:0.8136 logloss:0.659137 [INFO random_forest.cc:628] Training of tree 71/1000 (tree index:72) done accuracy:0.8176 logloss:0.577357 [INFO random_forest.cc:628] Training of tree 81/1000 (tree index:79) done accuracy:0.814 logloss:0.565115 [INFO random_forest.cc:628] Training of tree 91/1000 (tree index:91) done accuracy:0.8156 logloss:0.56459 [INFO random_forest.cc:628] Training of tree 101/1000 (tree index:99) done accuracy:0.8148 logloss:0.564104 [INFO random_forest.cc:628] Training of tree 111/1000 (tree index:109) done accuracy:0.8172 logloss:0.537417 [INFO random_forest.cc:628] Training of tree 121/1000 (tree index:120) done accuracy:0.8156 logloss:0.524543 [INFO random_forest.cc:628] Training of tree 131/1000 (tree index:132) done accuracy:0.8152 logloss:0.511111 [INFO random_forest.cc:628] Training of tree 141/1000 (tree index:141) done accuracy:0.816 logloss:0.498209 [INFO random_forest.cc:628] Training of tree 151/1000 (tree index:150) done accuracy:0.8192 logloss:0.485477 [INFO random_forest.cc:628] Training of tree 161/1000 (tree index:160) done accuracy:0.8196 logloss:0.472341 [INFO random_forest.cc:628] Training of tree 171/1000 (tree index:171) done accuracy:0.818 logloss:0.459903 [INFO random_forest.cc:628] Training of tree 181/1000 (tree index:182) done accuracy:0.8172 logloss:0.459812 [INFO random_forest.cc:628] Training of tree 191/1000 (tree index:190) done accuracy:0.8192 logloss:0.459588 [INFO random_forest.cc:628] Training of tree 201/1000 (tree index:199) done accuracy:0.818 logloss:0.459855 [INFO random_forest.cc:628] Training of tree 211/1000 (tree index:209) done accuracy:0.8176 logloss:0.459088 [INFO random_forest.cc:628] Training of tree 221/1000 (tree index:221) done accuracy:0.8168 logloss:0.43377 [INFO random_forest.cc:628] Training of tree 231/1000 (tree index:233) done accuracy:0.8196 logloss:0.433567 [INFO random_forest.cc:628] Training of tree 241/1000 (tree index:241) done accuracy:0.8208 logloss:0.434371 [INFO random_forest.cc:628] Training of tree 251/1000 (tree index:250) done accuracy:0.8192 logloss:0.434301 [INFO random_forest.cc:628] Training of tree 261/1000 (tree index:260) done accuracy:0.8172 logloss:0.43402 [INFO random_forest.cc:628] Training of tree 271/1000 (tree index:271) done accuracy:0.818 logloss:0.433583 [INFO random_forest.cc:628] Training of tree 281/1000 (tree index:283) done accuracy:0.8184 logloss:0.420657 [INFO random_forest.cc:628] Training of tree 291/1000 (tree index:291) done accuracy:0.8168 logloss:0.420481 [INFO random_forest.cc:628] Training of tree 301/1000 (tree index:299) done accuracy:0.82 logloss:0.419901 [INFO random_forest.cc:628] Training of tree 311/1000 (tree index:312) done accuracy:0.8188 logloss:0.419881 [INFO random_forest.cc:628] Training of tree 321/1000 (tree index:319) done accuracy:0.8172 logloss:0.419582 [INFO random_forest.cc:628] Training of tree 331/1000 (tree index:332) done accuracy:0.8176 logloss:0.419608 [INFO random_forest.cc:628] Training of tree 341/1000 (tree index:341) done accuracy:0.816 logloss:0.419608 [INFO random_forest.cc:628] Training of tree 351/1000 (tree index:352) done accuracy:0.8152 logloss:0.419729 [INFO random_forest.cc:628] Training of tree 361/1000 (tree index:361) done accuracy:0.8152 logloss:0.419264 [INFO random_forest.cc:628] Training of tree 371/1000 (tree index:369) done accuracy:0.8148 logloss:0.418932 [INFO random_forest.cc:628] Training of tree 381/1000 (tree index:379) done accuracy:0.8156 logloss:0.419148 [INFO random_forest.cc:628] Training of tree 391/1000 (tree index:391) done accuracy:0.8164 logloss:0.419344 [INFO random_forest.cc:628] Training of tree 401/1000 (tree index:398) done accuracy:0.8156 logloss:0.419051 [INFO random_forest.cc:628] Training of tree 411/1000 (tree index:408) done accuracy:0.8168 logloss:0.406486 [INFO random_forest.cc:628] Training of tree 421/1000 (tree index:420) done accuracy:0.8168 logloss:0.406477 [INFO random_forest.cc:628] Training of tree 431/1000 (tree index:430) done accuracy:0.816 logloss:0.406362 [INFO random_forest.cc:628] Training of tree 441/1000 (tree index:440) done accuracy:0.8172 logloss:0.406377 [INFO random_forest.cc:628] Training of tree 451/1000 (tree index:448) done accuracy:0.8176 logloss:0.406083 [INFO random_forest.cc:628] Training of tree 461/1000 (tree index:458) done accuracy:0.8172 logloss:0.406205 [INFO random_forest.cc:628] Training of tree 471/1000 (tree index:474) done accuracy:0.8168 logloss:0.406437 [INFO random_forest.cc:628] Training of tree 481/1000 (tree index:482) done accuracy:0.8184 logloss:0.406287 [INFO random_forest.cc:628] Training of tree 491/1000 (tree index:490) done accuracy:0.8172 logloss:0.40588 [INFO random_forest.cc:628] Training of tree 501/1000 (tree index:498) done accuracy:0.816 logloss:0.406036 [INFO random_forest.cc:628] Training of tree 511/1000 (tree index:508) done accuracy:0.8164 logloss:0.406053 [INFO random_forest.cc:628] Training of tree 521/1000 (tree index:524) done accuracy:0.8168 logloss:0.405945 [INFO random_forest.cc:628] Training of tree 531/1000 (tree index:530) done accuracy:0.816 logloss:0.405778 [INFO random_forest.cc:628] Training of tree 541/1000 (tree index:540) done accuracy:0.8156 logloss:0.405737 [INFO random_forest.cc:628] Training of tree 551/1000 (tree index:552) done accuracy:0.8156 logloss:0.406028 [INFO random_forest.cc:628] Training of tree 561/1000 (tree index:559) done accuracy:0.8164 logloss:0.406081 [INFO random_forest.cc:628] Training of tree 571/1000 (tree index:569) done accuracy:0.8152 logloss:0.405734 [INFO random_forest.cc:628] Training of tree 581/1000 (tree index:579) done accuracy:0.8172 logloss:0.393451 [INFO random_forest.cc:628] Training of tree 591/1000 (tree index:591) done accuracy:0.816 logloss:0.393428 [INFO random_forest.cc:628] Training of tree 601/1000 (tree index:603) done accuracy:0.8156 logloss:0.393545 [INFO random_forest.cc:628] Training of tree 611/1000 (tree index:609) done accuracy:0.8156 logloss:0.3934 [INFO random_forest.cc:628] Training of tree 621/1000 (tree index:620) done accuracy:0.8148 logloss:0.393539 [INFO random_forest.cc:628] Training of tree 631/1000 (tree index:629) done accuracy:0.8156 logloss:0.393731 [INFO random_forest.cc:628] Training of tree 641/1000 (tree index:641) done accuracy:0.8164 logloss:0.39383 [INFO random_forest.cc:628] Training of tree 651/1000 (tree index:649) done accuracy:0.8152 logloss:0.393724 [INFO random_forest.cc:628] Training of tree 661/1000 (tree index:659) done accuracy:0.8152 logloss:0.393764 [INFO random_forest.cc:628] Training of tree 671/1000 (tree index:670) done accuracy:0.816 logloss:0.393834 [INFO random_forest.cc:628] Training of tree 681/1000 (tree index:680) done accuracy:0.8156 logloss:0.393894 [INFO random_forest.cc:628] Training of tree 691/1000 (tree index:689) done accuracy:0.8152 logloss:0.393746 [INFO random_forest.cc:628] Training of tree 701/1000 (tree index:698) done accuracy:0.814 logloss:0.393743 [INFO random_forest.cc:628] Training of tree 711/1000 (tree index:708) done accuracy:0.8152 logloss:0.393294 [INFO random_forest.cc:628] Training of tree 721/1000 (tree index:721) done accuracy:0.816 logloss:0.393451 [INFO random_forest.cc:628] Training of tree 731/1000 (tree index:733) done accuracy:0.8164 logloss:0.393486 [INFO random_forest.cc:628] Training of tree 741/1000 (tree index:739) done accuracy:0.8156 logloss:0.393553 [INFO random_forest.cc:628] Training of tree 751/1000 (tree index:751) done accuracy:0.816 logloss:0.393731 [INFO random_forest.cc:628] Training of tree 761/1000 (tree index:758) done accuracy:0.8172 logloss:0.393635 [INFO random_forest.cc:628] Training of tree 771/1000 (tree index:769) done accuracy:0.8164 logloss:0.393584 [INFO random_forest.cc:628] Training of tree 781/1000 (tree index:779) done accuracy:0.8184 logloss:0.393728 [INFO random_forest.cc:628] Training of tree 791/1000 (tree index:789) done accuracy:0.8192 logloss:0.393858 [INFO random_forest.cc:628] Training of tree 801/1000 (tree index:800) done accuracy:0.8184 logloss:0.381756 [INFO random_forest.cc:628] Training of tree 811/1000 (tree index:813) done accuracy:0.82 logloss:0.38174 [INFO random_forest.cc:628] Training of tree 821/1000 (tree index:819) done accuracy:0.8196 logloss:0.381865 [INFO random_forest.cc:628] Training of tree 831/1000 (tree index:829) done accuracy:0.8172 logloss:0.381929 [INFO random_forest.cc:628] Training of tree 841/1000 (tree index:838) done accuracy:0.8164 logloss:0.382007 [INFO random_forest.cc:628] Training of tree 851/1000 (tree index:850) done accuracy:0.8172 logloss:0.382099 [INFO random_forest.cc:628] Training of tree 861/1000 (tree index:863) done accuracy:0.8172 logloss:0.381937 [INFO random_forest.cc:628] Training of tree 871/1000 (tree index:869) done accuracy:0.8168 logloss:0.382131 [INFO random_forest.cc:628] Training of tree 881/1000 (tree index:879) done accuracy:0.8188 logloss:0.381963 [INFO random_forest.cc:628] Training of tree 891/1000 (tree index:889) done accuracy:0.8192 logloss:0.382052 [INFO random_forest.cc:628] Training of tree 901/1000 (tree index:901) done accuracy:0.8184 logloss:0.382174 [INFO random_forest.cc:628] Training of tree 911/1000 (tree index:913) done accuracy:0.8192 logloss:0.382273 [INFO random_forest.cc:628] Training of tree 921/1000 (tree index:919) done accuracy:0.82 logloss:0.382407 [INFO random_forest.cc:628] Training of tree 931/1000 (tree index:929) done accuracy:0.8216 logloss:0.382277 [INFO random_forest.cc:628] Training of tree 941/1000 (tree index:939) done accuracy:0.8204 logloss:0.382434 [INFO random_forest.cc:628] Training of tree 951/1000 (tree index:951) done accuracy:0.8192 logloss:0.382444 [INFO random_forest.cc:628] Training of tree 961/1000 (tree index:959) done accuracy:0.8192 logloss:0.382497 [INFO random_forest.cc:628] Training of tree 971/1000 (tree index:969) done accuracy:0.8188 logloss:0.382592 [INFO random_forest.cc:628] Training of tree 981/1000 (tree index:979) done accuracy:0.8192 logloss:0.382657 [INFO random_forest.cc:628] Training of tree 991/1000 (tree index:989) done accuracy:0.8188 logloss:0.382671 [INFO random_forest.cc:628] Training of tree 1000/1000 (tree index:997) done accuracy:0.8192 logloss:0.38269 [INFO random_forest.cc:696] Final OOB metrics: accuracy:0.8192 logloss:0.38269 [INFO kernel.cc:828] Export model in log directory: /tmp/tmp0r9hhl7d [INFO kernel.cc:836] Save model in resources [INFO kernel.cc:988] Loading model from path 40/40 [==============================] - 3s 64ms/step [INFO decision_forest.cc:590] Model loaded with 1000 root(s), 324942 node(s), and 10 input feature(s). [INFO kernel.cc:848] Use fast generic engine CPU times: user 21.5 s, sys: 755 ms, total: 22.2 s Wall time: 10.5 s <keras.callbacks.History at 0x7f6b7874c4d0>
ובואו נעריך את יערות ההחלטה בנפרד.
model_3.compile(["accuracy"])
model_4.compile(["accuracy"])
evaluation_df3_only = model_3.evaluate(
test_dataset_with_preprocessing, return_dict=True)
evaluation_df4_only = model_4.evaluate(
test_dataset_with_preprocessing, return_dict=True)
print("Accuracy (DF #3 only): ", evaluation_df3_only["accuracy"])
print("Accuracy (DF #4 only): ", evaluation_df4_only["accuracy"])
157/157 [==============================] - 2s 8ms/step - loss: 0.0000e+00 - accuracy: 0.8218 157/157 [==============================] - 1s 8ms/step - loss: 0.0000e+00 - accuracy: 0.8223 Accuracy (DF #3 only): 0.8217999935150146 Accuracy (DF #4 only): 0.8223000168800354
בואו נעריך את כל הרכב הדגם:
ensemble_nn_and_df.compile(
loss=tf.keras.losses.BinaryCrossentropy(), metrics=["accuracy"])
evaluation_nn_and_df = ensemble_nn_and_df.evaluate(
test_dataset, return_dict=True)
print("Accuracy (2xNN and 2xDF): ", evaluation_nn_and_df["accuracy"])
print("Loss (2xNN and 2xDF): ", evaluation_nn_and_df["loss"])
157/157 [==============================] - 2s 8ms/step - loss: 0.3707 - accuracy: 0.8236 Accuracy (2xNN and 2xDF): 0.8235999941825867 Loss (2xNN and 2xDF): 0.3706760108470917
לסיום, בואו נכוון את שכבת הרשת העצבית קצת יותר. שימו לב שאנחנו לא מכווננים את ההטמעה שהוכשרה מראש מכיוון שדגמי ה-DF תלויים בה (אלא אם כן היינו מחנכים אותם גם לאחר מכן).
לסיכום, יש לך:
print(f"Accuracy (NN #1 and #2 only):\t{evaluation_nn_only['accuracy']:.6f}")
print(f"Accuracy (DF #3 only):\t\t{evaluation_df3_only['accuracy']:.6f}")
print(f"Accuracy (DF #4 only):\t\t{evaluation_df4_only['accuracy']:.6f}")
print("----------------------------------------")
print(f"Accuracy (2xNN and 2xDF):\t{evaluation_nn_and_df['accuracy']:.6f}")
def delta_percent(src_eval, key):
src_acc = src_eval["accuracy"]
final_acc = evaluation_nn_and_df["accuracy"]
increase = final_acc - src_acc
print(f"\t\t\t\t {increase:+.6f} over {key}")
delta_percent(evaluation_nn_only, "NN #1 and #2 only")
delta_percent(evaluation_df3_only, "DF #3 only")
delta_percent(evaluation_df4_only, "DF #4 only")
Accuracy (NN #1 and #2 only): 0.820300 Accuracy (DF #3 only): 0.821800 Accuracy (DF #4 only): 0.822300 ---------------------------------------- Accuracy (2xNN and 2xDF): 0.823600 +0.003300 over NN #1 and #2 only +0.001800 over DF #3 only +0.001300 over DF #4 only
כאן, אתה יכול לראות שהדגם המורכב מתפקד טוב יותר מהחלקים הבודדים שלו. זו הסיבה שהרכבים עובדים כל כך טוב.
מה הלאה?
בדוגמה זו, ראית כיצד לשלב יערות החלטה עם רשתות עצביות. צעד נוסף יהיה להמשיך ולהכשיר את הרשת העצבית ואת יערות ההחלטה ביחד.
בנוסף, למען הבהירות, יערות ההחלטה קיבלו רק את הקלט המעובד מראש. עם זאת, יערות החלטה הם בדרך כלל נהדרים הם צורכים נתונים גולמיים. המודל ישופר על ידי הזנת התכונות הגולמיות למודלים של יער ההחלטה.
בדוגמה זו, המודל הסופי הוא הממוצע של התחזיות של המודלים הבודדים. פתרון זה עובד היטב אם כל הדגם מבצע יותר או פחות עם אותו הדבר. עם זאת, אם אחד מתת-המודלים טוב מאוד, צבירה שלו עם מודלים אחרים עשויה למעשה להזיק (או להיפך; למשל נסה לצמצם את מספר הדוגמאות מ-1k ולראות איך זה פוגע מאוד ברשתות העצביות; או לאפשר SPARSE_OBLIQUE
פיצול במודל השני Random Forest).