Zobacz na TensorFlow.org | Uruchom w Google Colab | Zobacz na GitHub | Pobierz notatnik | Funkcjonalne API Keras |
Wstęp
Witaj w poradniku skład modelu Do decyzji TensorFlow Lasów (TF-DF). Notebook ten pokazuje, jak komponować wielokrotnego las decyzji i modeli sieci neuronowych razem wykorzystując wspólną warstwę przebiegu wyprzedzającego i API funkcjonalny Keras .
Możesz chcieć skomponować modele razem, aby poprawić wydajność predykcyjną (składanie), aby jak najlepiej wykorzystać różne technologie modelowania (heterogeniczne składanie modeli), trenować różne części modelu na różnych zestawach danych (np. uczenie wstępne) lub utworzyć model skumulowany (np. model operuje na przewidywaniach innego modelu).
Ten samouczek obejmuje zaawansowany przypadek użycia kompozycji modelu przy użyciu funkcjonalnego interfejsu API. Można znaleźć przykłady dla prostszych scenariuszy modelu składu w „cecha przerób” w niniejszym poradniku oraz w „używając pretrained tekst osadzania” w tym samouczku .
Oto struktura modelu, który zbudujesz:
!pip install graphviz -U --quiet
from graphviz import Source
Source("""
digraph G {
raw_data [label="Input features"];
preprocess_data [label="Learnable NN pre-processing", shape=rect];
raw_data -> preprocess_data
subgraph cluster_0 {
color=grey;
a1[label="NN layer", shape=rect];
b1[label="NN layer", shape=rect];
a1 -> b1;
label = "Model #1";
}
subgraph cluster_1 {
color=grey;
a2[label="NN layer", shape=rect];
b2[label="NN layer", shape=rect];
a2 -> b2;
label = "Model #2";
}
subgraph cluster_2 {
color=grey;
a3[label="Decision Forest", shape=rect];
label = "Model #3";
}
subgraph cluster_3 {
color=grey;
a4[label="Decision Forest", shape=rect];
label = "Model #4";
}
preprocess_data -> a1;
preprocess_data -> a2;
preprocess_data -> a3;
preprocess_data -> a4;
b1 -> aggr;
b2 -> aggr;
a3 -> aggr;
a4 -> aggr;
aggr [label="Aggregation (mean)", shape=rect]
aggr -> predictions
}
""")
Twój skomponowany model ma trzy etapy:
- Pierwszym etapem jest warstwa przetwarzania wstępnego złożona z sieci neuronowej i wspólna dla wszystkich modeli w kolejnym etapie. W praktyce taka warstwa przetwarzania wstępnego może być albo wstępnie wytrenowanym osadzaniem w celu dostrojenia, albo losowo zainicjowaną siecią neuronową.
- Drugi etap to zespół dwóch modeli lasu decyzyjnego i dwóch sieci neuronowych.
- Ostatni etap uśrednia przewidywania modeli w drugim etapie. Nie zawiera żadnych wag, których można się nauczyć.
Sieci neuronowe są przeszkoleni z wykorzystaniem algorytmu wstecznej propagacji błędów i zejście gradientu. Algorytm ten ma dwie ważne właściwości: (1) Warstwa sieci neuronowej może być wytrenowana, jeśli otrzyma gradient strat (a dokładniej gradient strat zgodny z wyjściem warstwy) oraz (2) algorytm „przesyła” gradient strat z wyjścia warstwy do wejścia warstwy (jest to „zasada łańcucha”). Z tych dwóch powodów Backpropagation może trenować razem wiele warstw sieci neuronowych ułożonych jedna na drugiej.
W tym przykładzie, lasy decyzyjne są przeszkoleni z Losowe Las algorytmu (RF). W przeciwieństwie do propagacji wstecznej, trening RF nie „przekazuje” gradientu strat z wyjścia do wejścia. Z tego powodu klasyczny algorytm RF nie może być używany do trenowania lub dostrajania sieci neuronowej znajdującej się pod spodem. Innymi słowy, etapy „lasu decyzyjnego” nie mogą być używane do trenowania „uczącego się bloku wstępnego przetwarzania sieci NN”.
- Trenuj etap przetwarzania wstępnego i sieci neuronowych.
- Trenuj etapy decyzyjne lasu.
Zainstaluj lasy decyzyjne TensorFlow
Zainstaluj TF-DF, uruchamiając następującą komórkę.
pip install tensorflow_decision_forests -U --quiet
Zainstalować Wurlitzer , aby wyświetlić szczegółowe dzienniki treningowe. Jest to potrzebne tylko w notebookach.
pip install wurlitzer -U --quiet
Importuj biblioteki
import tensorflow_decision_forests as tfdf
import os
import numpy as np
import pandas as pd
import tensorflow as tf
import math
import matplotlib.pyplot as plt
try:
from wurlitzer import sys_pipes
except:
from colabtools.googlelog import CaptureLog as sys_pipes
from IPython.core.magic import register_line_magic
from IPython.display import Javascript
WARNING:root:Failure to load the custom c++ tensorflow ops. This error is likely caused the version of TensorFlow and TensorFlow Decision Forests are not compatible. WARNING:root:TF Parameter Server distributed training not available.
Zbiór danych
W tym samouczku użyjesz prostego syntetycznego zestawu danych, aby ułatwić interpretację ostatecznego modelu.
def make_dataset(num_examples, num_features, seed=1234):
np.random.seed(seed)
features = np.random.uniform(-1, 1, size=(num_examples, num_features))
noise = np.random.uniform(size=(num_examples))
left_side = np.sqrt(
np.sum(np.multiply(np.square(features[:, 0:2]), [1, 2]), axis=1))
right_side = features[:, 2] * 0.7 + np.sin(
features[:, 3] * 10) * 0.5 + noise * 0.0 + 0.5
labels = left_side <= right_side
return features, labels.astype(int)
Wygeneruj kilka przykładów:
make_dataset(num_examples=5, num_features=4)
(array([[-0.6169611 , 0.24421754, -0.12454452, 0.57071717], [ 0.55995162, -0.45481479, -0.44707149, 0.60374436], [ 0.91627871, 0.75186527, -0.28436546, 0.00199025], [ 0.36692587, 0.42540405, -0.25949849, 0.12239237], [ 0.00616633, -0.9724631 , 0.54565324, 0.76528238]]), array([0, 0, 0, 1, 0]))
Możesz je również wykreślić, aby zorientować się w syntetycznym wzorze:
plot_features, plot_label = make_dataset(num_examples=50000, num_features=4)
plt.rcParams["figure.figsize"] = [8, 8]
common_args = dict(c=plot_label, s=1.0, alpha=0.5)
plt.subplot(2, 2, 1)
plt.scatter(plot_features[:, 0], plot_features[:, 1], **common_args)
plt.subplot(2, 2, 2)
plt.scatter(plot_features[:, 1], plot_features[:, 2], **common_args)
plt.subplot(2, 2, 3)
plt.scatter(plot_features[:, 0], plot_features[:, 2], **common_args)
plt.subplot(2, 2, 4)
plt.scatter(plot_features[:, 0], plot_features[:, 3], **common_args)
<matplotlib.collections.PathCollection at 0x7f6b78d20e90>
Zauważ, że ten wzór jest gładki i nie jest wyrównany do osi. Będzie to korzystne dla modeli sieci neuronowych. Dzieje się tak dlatego, że sieci neuronowej łatwiej jest mieć okrągłe i nie wyrównane granice decyzyjne niż drzewo decyzyjne.
Z drugiej strony będziemy trenować model na małych zbiorach danych z 2500 przykładami. Będzie to korzystne dla decyzyjnych modeli lasów. Dzieje się tak, ponieważ lasy decyzyjne są znacznie wydajniejsze, wykorzystując wszystkie dostępne informacje z przykładów (lasy decyzyjne są „wydajne w próbie”).
Nasz zespół sieci neuronowych i lasów decyzyjnych wykorzysta to, co najlepsze z obu światów.
Stwórzmy trenować i testować tf.data.Dataset
:
def make_tf_dataset(batch_size=64, **args):
features, labels = make_dataset(**args)
return tf.data.Dataset.from_tensor_slices(
(features, labels)).batch(batch_size)
num_features = 10
train_dataset = make_tf_dataset(
num_examples=2500, num_features=num_features, batch_size=64, seed=1234)
test_dataset = make_tf_dataset(
num_examples=10000, num_features=num_features, batch_size=64, seed=5678)
Struktura modelu
Zdefiniuj strukturę modelu w następujący sposób:
# Input features.
raw_features = tf.keras.layers.Input(shape=(num_features,))
# Stage 1
# =======
# Common learnable pre-processing
preprocessor = tf.keras.layers.Dense(10, activation=tf.nn.relu6)
preprocess_features = preprocessor(raw_features)
# Stage 2
# =======
# Model #1: NN
m1_z1 = tf.keras.layers.Dense(5, activation=tf.nn.relu6)(preprocess_features)
m1_pred = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)(m1_z1)
# Model #2: NN
m2_z1 = tf.keras.layers.Dense(5, activation=tf.nn.relu6)(preprocess_features)
m2_pred = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)(m2_z1)
def seed_advanced_argument(seed):
"""Create a seed argument for a TF-DF model.
TODO(gbm): Surface the "seed" argument to the model constructor directly.
"""
return tfdf.keras.AdvancedArguments(
yggdrasil_training_config=tfdf.keras.core.YggdrasilTrainingConfig(
random_seed=seed))
# Model #3: DF
model_3 = tfdf.keras.RandomForestModel(
num_trees=1000, advanced_arguments=seed_advanced_argument(1234))
m3_pred = model_3(preprocess_features)
# Model #4: DF
model_4 = tfdf.keras.RandomForestModel(
num_trees=1000,
#split_axis="SPARSE_OBLIQUE", # Uncomment this line to increase the quality of this model
advanced_arguments=seed_advanced_argument(4567))
m4_pred = model_4(preprocess_features)
# Since TF-DF uses deterministic learning algorithms, you should set the model's
# training seed to different values otherwise both
# `tfdf.keras.RandomForestModel` will be exactly the same.
# Stage 3
# =======
mean_nn_only = tf.reduce_mean(tf.stack([m1_pred, m2_pred], axis=0), axis=0)
mean_nn_and_df = tf.reduce_mean(
tf.stack([m1_pred, m2_pred, m3_pred, m4_pred], axis=0), axis=0)
# Keras Models
# ============
ensemble_nn_only = tf.keras.models.Model(raw_features, mean_nn_only)
ensemble_nn_and_df = tf.keras.models.Model(raw_features, mean_nn_and_df)
WARNING:tensorflow:AutoGraph could not transform <bound method Socket.send of <zmq.Socket(zmq.PUSH) at 0x7f6ba21b62f0>> and will run it as-is. Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING:absl:The model was called directly (i.e. using `model(data)` instead of using `model.predict(data)`) before being trained. The model will only return zeros until trained. The output shape might change after training Tensor("inputs:0", shape=(None, 10), dtype=float32) WARNING:tensorflow:AutoGraph could not transform <bound method Socket.send of <zmq.Socket(zmq.PUSH) at 0x7f6ba21b62f0>> and will run it as-is. Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING: AutoGraph could not transform <bound method Socket.send of <zmq.Socket(zmq.PUSH) at 0x7f6ba21b62f0>> and will run it as-is. Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING:absl:The model was called directly (i.e. using `model(data)` instead of using `model.predict(data)`) before being trained. The model will only return zeros until trained. The output shape might change after training Tensor("inputs:0", shape=(None, 10), dtype=float32)
Zanim zaczniesz trenować model, możesz go wykreślić, aby sprawdzić, czy jest podobny do początkowego diagramu.
from keras.utils.vis_utils import plot_model
plot_model(ensemble_nn_and_df, to_file="/tmp/model.png", show_shapes=True)
Szkolenie modelowe
Najpierw wytrenuj wstępne przetwarzanie i dwie warstwy sieci neuronowej za pomocą algorytmu wstecznej propagacji błędów.
%%time
ensemble_nn_only.compile(
optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.BinaryCrossentropy(),
metrics=["accuracy"])
ensemble_nn_only.fit(train_dataset, epochs=20, validation_data=test_dataset)
Epoch 1/20 40/40 [==============================] - 1s 13ms/step - loss: 0.6115 - accuracy: 0.7308 - val_loss: 0.5857 - val_accuracy: 0.7407 Epoch 2/20 40/40 [==============================] - 0s 9ms/step - loss: 0.5645 - accuracy: 0.7484 - val_loss: 0.5487 - val_accuracy: 0.7391 Epoch 3/20 40/40 [==============================] - 0s 9ms/step - loss: 0.5310 - accuracy: 0.7496 - val_loss: 0.5237 - val_accuracy: 0.7392 Epoch 4/20 40/40 [==============================] - 0s 9ms/step - loss: 0.5074 - accuracy: 0.7500 - val_loss: 0.5055 - val_accuracy: 0.7391 Epoch 5/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4887 - accuracy: 0.7496 - val_loss: 0.4901 - val_accuracy: 0.7397 Epoch 6/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4725 - accuracy: 0.7520 - val_loss: 0.4763 - val_accuracy: 0.7440 Epoch 7/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4585 - accuracy: 0.7584 - val_loss: 0.4644 - val_accuracy: 0.7542 Epoch 8/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4470 - accuracy: 0.7700 - val_loss: 0.4544 - val_accuracy: 0.7682 Epoch 9/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4374 - accuracy: 0.7804 - val_loss: 0.4462 - val_accuracy: 0.7789 Epoch 10/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4297 - accuracy: 0.7848 - val_loss: 0.4395 - val_accuracy: 0.7865 Epoch 11/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4232 - accuracy: 0.7904 - val_loss: 0.4339 - val_accuracy: 0.7933 Epoch 12/20 40/40 [==============================] - 0s 10ms/step - loss: 0.4176 - accuracy: 0.7952 - val_loss: 0.4289 - val_accuracy: 0.7963 Epoch 13/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4126 - accuracy: 0.7992 - val_loss: 0.4243 - val_accuracy: 0.8010 Epoch 14/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4078 - accuracy: 0.8052 - val_loss: 0.4199 - val_accuracy: 0.8033 Epoch 15/20 40/40 [==============================] - 0s 9ms/step - loss: 0.4029 - accuracy: 0.8096 - val_loss: 0.4155 - val_accuracy: 0.8067 Epoch 16/20 40/40 [==============================] - 0s 9ms/step - loss: 0.3981 - accuracy: 0.8132 - val_loss: 0.4109 - val_accuracy: 0.8099 Epoch 17/20 40/40 [==============================] - 0s 9ms/step - loss: 0.3932 - accuracy: 0.8152 - val_loss: 0.4061 - val_accuracy: 0.8129 Epoch 18/20 40/40 [==============================] - 0s 9ms/step - loss: 0.3883 - accuracy: 0.8208 - val_loss: 0.4012 - val_accuracy: 0.8149 Epoch 19/20 40/40 [==============================] - 0s 9ms/step - loss: 0.3832 - accuracy: 0.8232 - val_loss: 0.3963 - val_accuracy: 0.8168 Epoch 20/20 40/40 [==============================] - 0s 10ms/step - loss: 0.3783 - accuracy: 0.8276 - val_loss: 0.3912 - val_accuracy: 0.8203 CPU times: user 12.1 s, sys: 2.14 s, total: 14.2 s Wall time: 8.54 s <keras.callbacks.History at 0x7f6b181d7450>
Oszacujmy przetwarzanie wstępne i część tylko z dwiema sieciami neuronowymi:
evaluation_nn_only = ensemble_nn_only.evaluate(test_dataset, return_dict=True)
print("Accuracy (NN #1 and #2 only): ", evaluation_nn_only["accuracy"])
print("Loss (NN #1 and #2 only): ", evaluation_nn_only["loss"])
157/157 [==============================] - 0s 2ms/step - loss: 0.3912 - accuracy: 0.8203 Accuracy (NN #1 and #2 only): 0.8202999830245972 Loss (NN #1 and #2 only): 0.39124569296836853
Wytrenujmy dwa komponenty Lasu Decyzyjnego (jeden po drugim).
%%time
train_dataset_with_preprocessing = train_dataset.map(lambda x,y: (preprocessor(x), y))
test_dataset_with_preprocessing = test_dataset.map(lambda x,y: (preprocessor(x), y))
model_3.fit(train_dataset_with_preprocessing)
model_4.fit(train_dataset_with_preprocessing)
WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b86bc3dd0> and will run it as-is. Cause: could not parse the source code of <function <lambda> at 0x7f6b86bc3dd0>: no matching AST found among candidates: To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b86bc3dd0> and will run it as-is. Cause: could not parse the source code of <function <lambda> at 0x7f6b86bc3dd0>: no matching AST found among candidates: To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING: AutoGraph could not transform <function <lambda> at 0x7f6b86bc3dd0> and will run it as-is. Cause: could not parse the source code of <function <lambda> at 0x7f6b86bc3dd0>: no matching AST found among candidates: To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b783a9320> and will run it as-is. Cause: could not parse the source code of <function <lambda> at 0x7f6b783a9320>: no matching AST found among candidates: To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b783a9320> and will run it as-is. Cause: could not parse the source code of <function <lambda> at 0x7f6b783a9320>: no matching AST found among candidates: To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert WARNING: AutoGraph could not transform <function <lambda> at 0x7f6b783a9320> and will run it as-is. Cause: could not parse the source code of <function <lambda> at 0x7f6b783a9320>: no matching AST found among candidates: To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert 23/40 [================>.............] - ETA: 0s [INFO kernel.cc:736] Start Yggdrasil model training [INFO kernel.cc:737] Collect training examples [INFO kernel.cc:392] Number of batches: 40 [INFO kernel.cc:393] Number of examples: 2500 [INFO kernel.cc:759] Dataset: Number of records: 2500 Number of columns: 11 Number of columns by type: NUMERICAL: 10 (90.9091%) CATEGORICAL: 1 (9.09091%) Columns: NUMERICAL: 10 (90.9091%) 0: "data:0.0" NUMERICAL mean:0.356465 min:0 max:2.37352 sd:0.451418 1: "data:0.1" NUMERICAL mean:0.392088 min:0 max:2.3411 sd:0.470499 2: "data:0.2" NUMERICAL mean:0.382386 min:0 max:2.11809 sd:0.483672 3: "data:0.3" NUMERICAL mean:0.290395 min:0 max:2.27481 sd:0.400102 4: "data:0.4" NUMERICAL mean:0.210684 min:0 max:1.35897 sd:0.281379 5: "data:0.5" NUMERICAL mean:0.4008 min:0 max:2.06561 sd:0.453018 6: "data:0.6" NUMERICAL mean:0.289166 min:0 max:2.0263 sd:0.407337 7: "data:0.7" NUMERICAL mean:0.277971 min:0 max:1.77561 sd:0.363215 8: "data:0.8" NUMERICAL mean:0.41254 min:0 max:2.79804 sd:0.553333 9: "data:0.9" NUMERICAL mean:0.197082 min:0 max:1.60773 sd:0.298194 CATEGORICAL: 1 (9.09091%) 10: "__LABEL" CATEGORICAL integerized vocab-size:3 no-ood-item Terminology: nas: Number of non-available (i.e. missing) values. ood: Out of dictionary. manually-defined: Attribute which type is manually defined by the user i.e. the type was not automatically inferred. tokenized: The attribute value is obtained through tokenization. has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string. vocab-size: Number of unique values. [INFO kernel.cc:762] Configure learner [INFO kernel.cc:787] Training config: learner: "RANDOM_FOREST" features: "data:0\\.0" features: "data:0\\.1" features: "data:0\\.2" features: "data:0\\.3" features: "data:0\\.4" features: "data:0\\.5" features: "data:0\\.6" features: "data:0\\.7" features: "data:0\\.8" features: "data:0\\.9" label: "__LABEL" task: CLASSIFICATION random_seed: 1234 [yggdrasil_decision_forests.model.random_forest.proto.random_forest_config] { num_trees: 1000 decision_tree { max_depth: 16 min_examples: 5 in_split_min_examples_check: true missing_value_policy: GLOBAL_IMPUTATION allow_na_conditions: false categorical_set_greedy_forward { sampling: 0.1 max_num_items: -1 min_item_frequency: 1 } growing_strategy_local { } categorical { cart { } } num_candidate_attributes_ratio: -1 axis_aligned_split { } internal { sorting_strategy: PRESORTED } } winner_take_all_inference: true compute_oob_performances: true compute_oob_variable_importances: false adapt_bootstrap_size_ratio_for_maximum_training_duration: false } [INFO kernel.cc:790] Deployment config: num_threads: 6 [INFO kernel.cc:817] Train model [INFO random_forest.cc:315] Training random forest on 2500 example(s) and 10 feature(s). [INFO random_forest.cc:628] Training of tree 1/1000 (tree index:1) done accuracy:0.781996 logloss:7.85767 [INFO random_forest.cc:628] Training of tree 11/1000 (tree index:8) done accuracy:0.79895 logloss:2.7263 [INFO random_forest.cc:628] Training of tree 21/1000 (tree index:20) done accuracy:0.8012 logloss:1.26831 [INFO random_forest.cc:628] Training of tree 31/1000 (tree index:30) done accuracy:0.8076 logloss:0.898323 [INFO random_forest.cc:628] Training of tree 41/1000 (tree index:37) done accuracy:0.8084 logloss:0.736323 [INFO random_forest.cc:628] Training of tree 51/1000 (tree index:51) done accuracy:0.8072 logloss:0.612984 [INFO random_forest.cc:628] Training of tree 61/1000 (tree index:63) done accuracy:0.8104 logloss:0.55782 [INFO random_forest.cc:628] Training of tree 71/1000 (tree index:69) done accuracy:0.81 logloss:0.544938 [INFO random_forest.cc:628] Training of tree 81/1000 (tree index:80) done accuracy:0.814 logloss:0.532167 [INFO random_forest.cc:628] Training of tree 91/1000 (tree index:89) done accuracy:0.8144 logloss:0.530892 [INFO random_forest.cc:628] Training of tree 101/1000 (tree index:100) done accuracy:0.814 logloss:0.516588 [INFO random_forest.cc:628] Training of tree 111/1000 (tree index:108) done accuracy:0.8128 logloss:0.490739 [INFO random_forest.cc:628] Training of tree 121/1000 (tree index:118) done accuracy:0.8124 logloss:0.490544 [INFO random_forest.cc:628] Training of tree 131/1000 (tree index:134) done accuracy:0.8112 logloss:0.451653 [INFO random_forest.cc:628] Training of tree 141/1000 (tree index:140) done accuracy:0.8136 logloss:0.437757 [INFO random_forest.cc:628] Training of tree 151/1000 (tree index:150) done accuracy:0.8144 logloss:0.424328 [INFO random_forest.cc:628] Training of tree 161/1000 (tree index:159) done accuracy:0.8132 logloss:0.42426 [INFO random_forest.cc:628] Training of tree 171/1000 (tree index:168) done accuracy:0.814 logloss:0.411061 [INFO random_forest.cc:628] Training of tree 181/1000 (tree index:184) done accuracy:0.8136 logloss:0.411324 [INFO random_forest.cc:628] Training of tree 191/1000 (tree index:190) done accuracy:0.8148 logloss:0.410002 [INFO random_forest.cc:628] Training of tree 201/1000 (tree index:200) done accuracy:0.8144 logloss:0.409526 [INFO random_forest.cc:628] Training of tree 211/1000 (tree index:208) done accuracy:0.814 logloss:0.40944 [INFO random_forest.cc:628] Training of tree 221/1000 (tree index:218) done accuracy:0.8152 logloss:0.409039 [INFO random_forest.cc:628] Training of tree 231/1000 (tree index:234) done accuracy:0.8144 logloss:0.409254 [INFO random_forest.cc:628] Training of tree 241/1000 (tree index:242) done accuracy:0.8144 logloss:0.40879 [INFO random_forest.cc:628] Training of tree 251/1000 (tree index:251) done accuracy:0.8152 logloss:0.395703 [INFO random_forest.cc:628] Training of tree 261/1000 (tree index:259) done accuracy:0.8168 logloss:0.395747 [INFO random_forest.cc:628] Training of tree 271/1000 (tree index:268) done accuracy:0.814 logloss:0.394959 [INFO random_forest.cc:628] Training of tree 281/1000 (tree index:283) done accuracy:0.8148 logloss:0.395202 [INFO random_forest.cc:628] Training of tree 291/1000 (tree index:292) done accuracy:0.8136 logloss:0.395536 [INFO random_forest.cc:628] Training of tree 301/1000 (tree index:300) done accuracy:0.8128 logloss:0.39472 [INFO random_forest.cc:628] Training of tree 311/1000 (tree index:308) done accuracy:0.8124 logloss:0.394763 [INFO random_forest.cc:628] Training of tree 321/1000 (tree index:318) done accuracy:0.8132 logloss:0.394732 [INFO random_forest.cc:628] Training of tree 331/1000 (tree index:334) done accuracy:0.8136 logloss:0.394822 [INFO random_forest.cc:628] Training of tree 341/1000 (tree index:343) done accuracy:0.812 logloss:0.395051 [INFO random_forest.cc:628] Training of tree 351/1000 (tree index:350) done accuracy:0.8132 logloss:0.39492 [INFO random_forest.cc:628] Training of tree 361/1000 (tree index:358) done accuracy:0.8132 logloss:0.395054 [INFO random_forest.cc:628] Training of tree 371/1000 (tree index:368) done accuracy:0.812 logloss:0.395588 [INFO random_forest.cc:628] Training of tree 381/1000 (tree index:384) done accuracy:0.8104 logloss:0.395576 [INFO random_forest.cc:628] Training of tree 391/1000 (tree index:390) done accuracy:0.8132 logloss:0.395713 [INFO random_forest.cc:628] Training of tree 401/1000 (tree index:400) done accuracy:0.8088 logloss:0.383693 [INFO random_forest.cc:628] Training of tree 411/1000 (tree index:408) done accuracy:0.8088 logloss:0.383575 [INFO random_forest.cc:628] Training of tree 421/1000 (tree index:417) done accuracy:0.8096 logloss:0.383934 [INFO random_forest.cc:628] Training of tree 431/1000 (tree index:434) done accuracy:0.81 logloss:0.384001 [INFO random_forest.cc:628] Training of tree 441/1000 (tree index:442) done accuracy:0.808 logloss:0.384118 [INFO random_forest.cc:628] Training of tree 451/1000 (tree index:450) done accuracy:0.8096 logloss:0.384076 [INFO random_forest.cc:628] Training of tree 461/1000 (tree index:458) done accuracy:0.8104 logloss:0.383208 [INFO random_forest.cc:628] Training of tree 471/1000 (tree index:468) done accuracy:0.812 logloss:0.383298 [INFO random_forest.cc:628] Training of tree 481/1000 (tree index:482) done accuracy:0.81 logloss:0.38358 [INFO random_forest.cc:628] Training of tree 491/1000 (tree index:492) done accuracy:0.812 logloss:0.383453 [INFO random_forest.cc:628] Training of tree 501/1000 (tree index:500) done accuracy:0.8128 logloss:0.38317 [INFO random_forest.cc:628] Training of tree 511/1000 (tree index:508) done accuracy:0.812 logloss:0.383369 [INFO random_forest.cc:628] Training of tree 521/1000 (tree index:518) done accuracy:0.8132 logloss:0.383461 [INFO random_forest.cc:628] Training of tree 531/1000 (tree index:532) done accuracy:0.8124 logloss:0.38342 [INFO random_forest.cc:628] Training of tree 541/1000 (tree index:542) done accuracy:0.8128 logloss:0.383376 [INFO random_forest.cc:628] Training of tree 551/1000 (tree index:550) done accuracy:0.8128 logloss:0.383663 [INFO random_forest.cc:628] Training of tree 561/1000 (tree index:558) done accuracy:0.812 logloss:0.383574 [INFO random_forest.cc:628] Training of tree 571/1000 (tree index:568) done accuracy:0.8116 logloss:0.383529 [INFO random_forest.cc:628] Training of tree 581/1000 (tree index:580) done accuracy:0.8128 logloss:0.383624 [INFO random_forest.cc:628] Training of tree 591/1000 (tree index:592) done accuracy:0.814 logloss:0.383599 [INFO random_forest.cc:628] Training of tree 601/1000 (tree index:601) done accuracy:0.8148 logloss:0.383524 [INFO random_forest.cc:628] Training of tree 611/1000 (tree index:608) done accuracy:0.8156 logloss:0.383555 [INFO random_forest.cc:628] Training of tree 621/1000 (tree index:619) done accuracy:0.8132 logloss:0.382847 [INFO random_forest.cc:628] Training of tree 631/1000 (tree index:632) done accuracy:0.8124 logloss:0.382872 [INFO random_forest.cc:628] Training of tree 641/1000 (tree index:641) done accuracy:0.8144 logloss:0.382728 [INFO random_forest.cc:628] Training of tree 651/1000 (tree index:648) done accuracy:0.8132 logloss:0.382554 [INFO random_forest.cc:628] Training of tree 661/1000 (tree index:658) done accuracy:0.8128 logloss:0.382705 [INFO random_forest.cc:628] Training of tree 671/1000 (tree index:670) done accuracy:0.8136 logloss:0.38288 [INFO random_forest.cc:628] Training of tree 681/1000 (tree index:682) done accuracy:0.8152 logloss:0.383007 [INFO random_forest.cc:628] Training of tree 691/1000 (tree index:690) done accuracy:0.8144 logloss:0.382971 [INFO random_forest.cc:628] Training of tree 701/1000 (tree index:698) done accuracy:0.8152 logloss:0.382869 [INFO random_forest.cc:628] Training of tree 711/1000 (tree index:708) done accuracy:0.8152 logloss:0.382792 [INFO random_forest.cc:628] Training of tree 721/1000 (tree index:722) done accuracy:0.8136 logloss:0.38274 [INFO random_forest.cc:628] Training of tree 731/1000 (tree index:732) done accuracy:0.8144 logloss:0.38268 [INFO random_forest.cc:628] Training of tree 741/1000 (tree index:740) done accuracy:0.814 logloss:0.382835 [INFO random_forest.cc:628] Training of tree 751/1000 (tree index:751) done accuracy:0.8152 logloss:0.38297 [INFO random_forest.cc:628] Training of tree 761/1000 (tree index:758) done accuracy:0.8152 logloss:0.382917 [INFO random_forest.cc:628] Training of tree 771/1000 (tree index:770) done accuracy:0.8156 logloss:0.370596 [INFO random_forest.cc:628] Training of tree 781/1000 (tree index:782) done accuracy:0.816 logloss:0.370687 [INFO random_forest.cc:628] Training of tree 791/1000 (tree index:789) done accuracy:0.8164 logloss:0.37068 [INFO random_forest.cc:628] Training of tree 801/1000 (tree index:798) done accuracy:0.8172 logloss:0.370535 [INFO random_forest.cc:628] Training of tree 811/1000 (tree index:809) done accuracy:0.816 logloss:0.370674 [INFO random_forest.cc:628] Training of tree 821/1000 (tree index:821) done accuracy:0.816 logloss:0.370929 [INFO random_forest.cc:628] Training of tree 831/1000 (tree index:829) done accuracy:0.8148 logloss:0.370904 [INFO random_forest.cc:628] Training of tree 841/1000 (tree index:841) done accuracy:0.8164 logloss:0.371016 [INFO random_forest.cc:628] Training of tree 851/1000 (tree index:849) done accuracy:0.8168 logloss:0.370914 [INFO random_forest.cc:628] Training of tree 861/1000 (tree index:860) done accuracy:0.8164 logloss:0.371043 [INFO random_forest.cc:628] Training of tree 871/1000 (tree index:871) done accuracy:0.8168 logloss:0.371094 [INFO random_forest.cc:628] Training of tree 881/1000 (tree index:878) done accuracy:0.8152 logloss:0.371054 [INFO random_forest.cc:628] Training of tree 891/1000 (tree index:888) done accuracy:0.8156 logloss:0.370908 [INFO random_forest.cc:628] Training of tree 901/1000 (tree index:900) done accuracy:0.8156 logloss:0.370831 [INFO random_forest.cc:628] Training of tree 911/1000 (tree index:910) done accuracy:0.8152 logloss:0.370775 [INFO random_forest.cc:628] Training of tree 921/1000 (tree index:922) done accuracy:0.814 logloss:0.370804 [INFO random_forest.cc:628] Training of tree 931/1000 (tree index:929) done accuracy:0.8148 logloss:0.370495 [INFO random_forest.cc:628] Training of tree 941/1000 (tree index:941) done accuracy:0.816 logloss:0.370443 [INFO random_forest.cc:628] Training of tree 951/1000 (tree index:948) done accuracy:0.8156 logloss:0.370486 [INFO random_forest.cc:628] Training of tree 961/1000 (tree index:960) done accuracy:0.8152 logloss:0.370519 [INFO random_forest.cc:628] Training of tree 971/1000 (tree index:971) done accuracy:0.8144 logloss:0.370543 [INFO random_forest.cc:628] Training of tree 981/1000 (tree index:983) done accuracy:0.8144 logloss:0.370629 [INFO random_forest.cc:628] Training of tree 991/1000 (tree index:991) done accuracy:0.814 logloss:0.370625 [INFO random_forest.cc:628] Training of tree 1000/1000 (tree index:998) done accuracy:0.8144 logloss:0.370667 [INFO random_forest.cc:696] Final OOB metrics: accuracy:0.8144 logloss:0.370667 [INFO kernel.cc:828] Export model in log directory: /tmp/tmp9izglk4r [INFO kernel.cc:836] Save model in resources [INFO kernel.cc:988] Loading model from path 40/40 [==============================] - 6s 66ms/step [INFO decision_forest.cc:590] Model loaded with 1000 root(s), 324508 node(s), and 10 input feature(s). [INFO abstract_model.cc:993] Engine "RandomForestOptPred" built [INFO kernel.cc:848] Use fast generic engine 24/40 [=================>............] - ETA: 0s [INFO kernel.cc:736] Start Yggdrasil model training [INFO kernel.cc:737] Collect training examples [INFO kernel.cc:392] Number of batches: 40 [INFO kernel.cc:393] Number of examples: 2500 [INFO kernel.cc:759] Dataset: Number of records: 2500 Number of columns: 11 Number of columns by type: NUMERICAL: 10 (90.9091%) CATEGORICAL: 1 (9.09091%) Columns: NUMERICAL: 10 (90.9091%) 0: "data:0.0" NUMERICAL mean:0.356465 min:0 max:2.37352 sd:0.451418 1: "data:0.1" NUMERICAL mean:0.392088 min:0 max:2.3411 sd:0.470499 2: "data:0.2" NUMERICAL mean:0.382386 min:0 max:2.11809 sd:0.483672 3: "data:0.3" NUMERICAL mean:0.290395 min:0 max:2.27481 sd:0.400102 4: "data:0.4" NUMERICAL mean:0.210684 min:0 max:1.35897 sd:0.281379 5: "data:0.5" NUMERICAL mean:0.4008 min:0 max:2.06561 sd:0.453018 6: "data:0.6" NUMERICAL mean:0.289166 min:0 max:2.0263 sd:0.407337 7: "data:0.7" NUMERICAL mean:0.277971 min:0 max:1.77561 sd:0.363215 8: "data:0.8" NUMERICAL mean:0.41254 min:0 max:2.79804 sd:0.553333 9: "data:0.9" NUMERICAL mean:0.197082 min:0 max:1.60773 sd:0.298194 CATEGORICAL: 1 (9.09091%) 10: "__LABEL" CATEGORICAL integerized vocab-size:3 no-ood-item Terminology: nas: Number of non-available (i.e. missing) values. ood: Out of dictionary. manually-defined: Attribute which type is manually defined by the user i.e. the type was not automatically inferred. tokenized: The attribute value is obtained through tokenization. has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string. vocab-size: Number of unique values. [INFO kernel.cc:762] Configure learner [INFO kernel.cc:787] Training config: learner: "RANDOM_FOREST" features: "data:0\\.0" features: "data:0\\.1" features: "data:0\\.2" features: "data:0\\.3" features: "data:0\\.4" features: "data:0\\.5" features: "data:0\\.6" features: "data:0\\.7" features: "data:0\\.8" features: "data:0\\.9" label: "__LABEL" task: CLASSIFICATION random_seed: 4567 [yggdrasil_decision_forests.model.random_forest.proto.random_forest_config] { num_trees: 1000 decision_tree { max_depth: 16 min_examples: 5 in_split_min_examples_check: true missing_value_policy: GLOBAL_IMPUTATION allow_na_conditions: false categorical_set_greedy_forward { sampling: 0.1 max_num_items: -1 min_item_frequency: 1 } growing_strategy_local { } categorical { cart { } } num_candidate_attributes_ratio: -1 axis_aligned_split { } internal { sorting_strategy: PRESORTED } } winner_take_all_inference: true compute_oob_performances: true compute_oob_variable_importances: false adapt_bootstrap_size_ratio_for_maximum_training_duration: false } [INFO kernel.cc:790] Deployment config: num_threads: 6 [INFO kernel.cc:817] Train model [INFO random_forest.cc:315] Training random forest on 2500 example(s) and 10 feature(s). [INFO random_forest.cc:628] Training of tree 1/1000 (tree index:1) done accuracy:0.783262 logloss:7.81204 [INFO random_forest.cc:628] Training of tree 11/1000 (tree index:9) done accuracy:0.801127 logloss:2.73187 [INFO random_forest.cc:628] Training of tree 21/1000 (tree index:19) done accuracy:0.811449 logloss:1.1286 [INFO random_forest.cc:628] Training of tree 31/1000 (tree index:32) done accuracy:0.8132 logloss:0.910787 [INFO random_forest.cc:628] Training of tree 41/1000 (tree index:42) done accuracy:0.812 logloss:0.745694 [INFO random_forest.cc:628] Training of tree 51/1000 (tree index:48) done accuracy:0.8144 logloss:0.690226 [INFO random_forest.cc:628] Training of tree 61/1000 (tree index:59) done accuracy:0.8136 logloss:0.659137 [INFO random_forest.cc:628] Training of tree 71/1000 (tree index:72) done accuracy:0.8176 logloss:0.577357 [INFO random_forest.cc:628] Training of tree 81/1000 (tree index:79) done accuracy:0.814 logloss:0.565115 [INFO random_forest.cc:628] Training of tree 91/1000 (tree index:91) done accuracy:0.8156 logloss:0.56459 [INFO random_forest.cc:628] Training of tree 101/1000 (tree index:99) done accuracy:0.8148 logloss:0.564104 [INFO random_forest.cc:628] Training of tree 111/1000 (tree index:109) done accuracy:0.8172 logloss:0.537417 [INFO random_forest.cc:628] Training of tree 121/1000 (tree index:120) done accuracy:0.8156 logloss:0.524543 [INFO random_forest.cc:628] Training of tree 131/1000 (tree index:132) done accuracy:0.8152 logloss:0.511111 [INFO random_forest.cc:628] Training of tree 141/1000 (tree index:141) done accuracy:0.816 logloss:0.498209 [INFO random_forest.cc:628] Training of tree 151/1000 (tree index:150) done accuracy:0.8192 logloss:0.485477 [INFO random_forest.cc:628] Training of tree 161/1000 (tree index:160) done accuracy:0.8196 logloss:0.472341 [INFO random_forest.cc:628] Training of tree 171/1000 (tree index:171) done accuracy:0.818 logloss:0.459903 [INFO random_forest.cc:628] Training of tree 181/1000 (tree index:182) done accuracy:0.8172 logloss:0.459812 [INFO random_forest.cc:628] Training of tree 191/1000 (tree index:190) done accuracy:0.8192 logloss:0.459588 [INFO random_forest.cc:628] Training of tree 201/1000 (tree index:199) done accuracy:0.818 logloss:0.459855 [INFO random_forest.cc:628] Training of tree 211/1000 (tree index:209) done accuracy:0.8176 logloss:0.459088 [INFO random_forest.cc:628] Training of tree 221/1000 (tree index:221) done accuracy:0.8168 logloss:0.43377 [INFO random_forest.cc:628] Training of tree 231/1000 (tree index:233) done accuracy:0.8196 logloss:0.433567 [INFO random_forest.cc:628] Training of tree 241/1000 (tree index:241) done accuracy:0.8208 logloss:0.434371 [INFO random_forest.cc:628] Training of tree 251/1000 (tree index:250) done accuracy:0.8192 logloss:0.434301 [INFO random_forest.cc:628] Training of tree 261/1000 (tree index:260) done accuracy:0.8172 logloss:0.43402 [INFO random_forest.cc:628] Training of tree 271/1000 (tree index:271) done accuracy:0.818 logloss:0.433583 [INFO random_forest.cc:628] Training of tree 281/1000 (tree index:283) done accuracy:0.8184 logloss:0.420657 [INFO random_forest.cc:628] Training of tree 291/1000 (tree index:291) done accuracy:0.8168 logloss:0.420481 [INFO random_forest.cc:628] Training of tree 301/1000 (tree index:299) done accuracy:0.82 logloss:0.419901 [INFO random_forest.cc:628] Training of tree 311/1000 (tree index:312) done accuracy:0.8188 logloss:0.419881 [INFO random_forest.cc:628] Training of tree 321/1000 (tree index:319) done accuracy:0.8172 logloss:0.419582 [INFO random_forest.cc:628] Training of tree 331/1000 (tree index:332) done accuracy:0.8176 logloss:0.419608 [INFO random_forest.cc:628] Training of tree 341/1000 (tree index:341) done accuracy:0.816 logloss:0.419608 [INFO random_forest.cc:628] Training of tree 351/1000 (tree index:352) done accuracy:0.8152 logloss:0.419729 [INFO random_forest.cc:628] Training of tree 361/1000 (tree index:361) done accuracy:0.8152 logloss:0.419264 [INFO random_forest.cc:628] Training of tree 371/1000 (tree index:369) done accuracy:0.8148 logloss:0.418932 [INFO random_forest.cc:628] Training of tree 381/1000 (tree index:379) done accuracy:0.8156 logloss:0.419148 [INFO random_forest.cc:628] Training of tree 391/1000 (tree index:391) done accuracy:0.8164 logloss:0.419344 [INFO random_forest.cc:628] Training of tree 401/1000 (tree index:398) done accuracy:0.8156 logloss:0.419051 [INFO random_forest.cc:628] Training of tree 411/1000 (tree index:408) done accuracy:0.8168 logloss:0.406486 [INFO random_forest.cc:628] Training of tree 421/1000 (tree index:420) done accuracy:0.8168 logloss:0.406477 [INFO random_forest.cc:628] Training of tree 431/1000 (tree index:430) done accuracy:0.816 logloss:0.406362 [INFO random_forest.cc:628] Training of tree 441/1000 (tree index:440) done accuracy:0.8172 logloss:0.406377 [INFO random_forest.cc:628] Training of tree 451/1000 (tree index:448) done accuracy:0.8176 logloss:0.406083 [INFO random_forest.cc:628] Training of tree 461/1000 (tree index:458) done accuracy:0.8172 logloss:0.406205 [INFO random_forest.cc:628] Training of tree 471/1000 (tree index:474) done accuracy:0.8168 logloss:0.406437 [INFO random_forest.cc:628] Training of tree 481/1000 (tree index:482) done accuracy:0.8184 logloss:0.406287 [INFO random_forest.cc:628] Training of tree 491/1000 (tree index:490) done accuracy:0.8172 logloss:0.40588 [INFO random_forest.cc:628] Training of tree 501/1000 (tree index:498) done accuracy:0.816 logloss:0.406036 [INFO random_forest.cc:628] Training of tree 511/1000 (tree index:508) done accuracy:0.8164 logloss:0.406053 [INFO random_forest.cc:628] Training of tree 521/1000 (tree index:524) done accuracy:0.8168 logloss:0.405945 [INFO random_forest.cc:628] Training of tree 531/1000 (tree index:530) done accuracy:0.816 logloss:0.405778 [INFO random_forest.cc:628] Training of tree 541/1000 (tree index:540) done accuracy:0.8156 logloss:0.405737 [INFO random_forest.cc:628] Training of tree 551/1000 (tree index:552) done accuracy:0.8156 logloss:0.406028 [INFO random_forest.cc:628] Training of tree 561/1000 (tree index:559) done accuracy:0.8164 logloss:0.406081 [INFO random_forest.cc:628] Training of tree 571/1000 (tree index:569) done accuracy:0.8152 logloss:0.405734 [INFO random_forest.cc:628] Training of tree 581/1000 (tree index:579) done accuracy:0.8172 logloss:0.393451 [INFO random_forest.cc:628] Training of tree 591/1000 (tree index:591) done accuracy:0.816 logloss:0.393428 [INFO random_forest.cc:628] Training of tree 601/1000 (tree index:603) done accuracy:0.8156 logloss:0.393545 [INFO random_forest.cc:628] Training of tree 611/1000 (tree index:609) done accuracy:0.8156 logloss:0.3934 [INFO random_forest.cc:628] Training of tree 621/1000 (tree index:620) done accuracy:0.8148 logloss:0.393539 [INFO random_forest.cc:628] Training of tree 631/1000 (tree index:629) done accuracy:0.8156 logloss:0.393731 [INFO random_forest.cc:628] Training of tree 641/1000 (tree index:641) done accuracy:0.8164 logloss:0.39383 [INFO random_forest.cc:628] Training of tree 651/1000 (tree index:649) done accuracy:0.8152 logloss:0.393724 [INFO random_forest.cc:628] Training of tree 661/1000 (tree index:659) done accuracy:0.8152 logloss:0.393764 [INFO random_forest.cc:628] Training of tree 671/1000 (tree index:670) done accuracy:0.816 logloss:0.393834 [INFO random_forest.cc:628] Training of tree 681/1000 (tree index:680) done accuracy:0.8156 logloss:0.393894 [INFO random_forest.cc:628] Training of tree 691/1000 (tree index:689) done accuracy:0.8152 logloss:0.393746 [INFO random_forest.cc:628] Training of tree 701/1000 (tree index:698) done accuracy:0.814 logloss:0.393743 [INFO random_forest.cc:628] Training of tree 711/1000 (tree index:708) done accuracy:0.8152 logloss:0.393294 [INFO random_forest.cc:628] Training of tree 721/1000 (tree index:721) done accuracy:0.816 logloss:0.393451 [INFO random_forest.cc:628] Training of tree 731/1000 (tree index:733) done accuracy:0.8164 logloss:0.393486 [INFO random_forest.cc:628] Training of tree 741/1000 (tree index:739) done accuracy:0.8156 logloss:0.393553 [INFO random_forest.cc:628] Training of tree 751/1000 (tree index:751) done accuracy:0.816 logloss:0.393731 [INFO random_forest.cc:628] Training of tree 761/1000 (tree index:758) done accuracy:0.8172 logloss:0.393635 [INFO random_forest.cc:628] Training of tree 771/1000 (tree index:769) done accuracy:0.8164 logloss:0.393584 [INFO random_forest.cc:628] Training of tree 781/1000 (tree index:779) done accuracy:0.8184 logloss:0.393728 [INFO random_forest.cc:628] Training of tree 791/1000 (tree index:789) done accuracy:0.8192 logloss:0.393858 [INFO random_forest.cc:628] Training of tree 801/1000 (tree index:800) done accuracy:0.8184 logloss:0.381756 [INFO random_forest.cc:628] Training of tree 811/1000 (tree index:813) done accuracy:0.82 logloss:0.38174 [INFO random_forest.cc:628] Training of tree 821/1000 (tree index:819) done accuracy:0.8196 logloss:0.381865 [INFO random_forest.cc:628] Training of tree 831/1000 (tree index:829) done accuracy:0.8172 logloss:0.381929 [INFO random_forest.cc:628] Training of tree 841/1000 (tree index:838) done accuracy:0.8164 logloss:0.382007 [INFO random_forest.cc:628] Training of tree 851/1000 (tree index:850) done accuracy:0.8172 logloss:0.382099 [INFO random_forest.cc:628] Training of tree 861/1000 (tree index:863) done accuracy:0.8172 logloss:0.381937 [INFO random_forest.cc:628] Training of tree 871/1000 (tree index:869) done accuracy:0.8168 logloss:0.382131 [INFO random_forest.cc:628] Training of tree 881/1000 (tree index:879) done accuracy:0.8188 logloss:0.381963 [INFO random_forest.cc:628] Training of tree 891/1000 (tree index:889) done accuracy:0.8192 logloss:0.382052 [INFO random_forest.cc:628] Training of tree 901/1000 (tree index:901) done accuracy:0.8184 logloss:0.382174 [INFO random_forest.cc:628] Training of tree 911/1000 (tree index:913) done accuracy:0.8192 logloss:0.382273 [INFO random_forest.cc:628] Training of tree 921/1000 (tree index:919) done accuracy:0.82 logloss:0.382407 [INFO random_forest.cc:628] Training of tree 931/1000 (tree index:929) done accuracy:0.8216 logloss:0.382277 [INFO random_forest.cc:628] Training of tree 941/1000 (tree index:939) done accuracy:0.8204 logloss:0.382434 [INFO random_forest.cc:628] Training of tree 951/1000 (tree index:951) done accuracy:0.8192 logloss:0.382444 [INFO random_forest.cc:628] Training of tree 961/1000 (tree index:959) done accuracy:0.8192 logloss:0.382497 [INFO random_forest.cc:628] Training of tree 971/1000 (tree index:969) done accuracy:0.8188 logloss:0.382592 [INFO random_forest.cc:628] Training of tree 981/1000 (tree index:979) done accuracy:0.8192 logloss:0.382657 [INFO random_forest.cc:628] Training of tree 991/1000 (tree index:989) done accuracy:0.8188 logloss:0.382671 [INFO random_forest.cc:628] Training of tree 1000/1000 (tree index:997) done accuracy:0.8192 logloss:0.38269 [INFO random_forest.cc:696] Final OOB metrics: accuracy:0.8192 logloss:0.38269 [INFO kernel.cc:828] Export model in log directory: /tmp/tmp0r9hhl7d [INFO kernel.cc:836] Save model in resources [INFO kernel.cc:988] Loading model from path 40/40 [==============================] - 3s 64ms/step [INFO decision_forest.cc:590] Model loaded with 1000 root(s), 324942 node(s), and 10 input feature(s). [INFO kernel.cc:848] Use fast generic engine CPU times: user 21.5 s, sys: 755 ms, total: 22.2 s Wall time: 10.5 s <keras.callbacks.History at 0x7f6b7874c4d0>
I oceńmy Lasy Decyzyjne indywidualnie.
model_3.compile(["accuracy"])
model_4.compile(["accuracy"])
evaluation_df3_only = model_3.evaluate(
test_dataset_with_preprocessing, return_dict=True)
evaluation_df4_only = model_4.evaluate(
test_dataset_with_preprocessing, return_dict=True)
print("Accuracy (DF #3 only): ", evaluation_df3_only["accuracy"])
print("Accuracy (DF #4 only): ", evaluation_df4_only["accuracy"])
157/157 [==============================] - 2s 8ms/step - loss: 0.0000e+00 - accuracy: 0.8218 157/157 [==============================] - 1s 8ms/step - loss: 0.0000e+00 - accuracy: 0.8223 Accuracy (DF #3 only): 0.8217999935150146 Accuracy (DF #4 only): 0.8223000168800354
Oceńmy cały skład modelu:
ensemble_nn_and_df.compile(
loss=tf.keras.losses.BinaryCrossentropy(), metrics=["accuracy"])
evaluation_nn_and_df = ensemble_nn_and_df.evaluate(
test_dataset, return_dict=True)
print("Accuracy (2xNN and 2xDF): ", evaluation_nn_and_df["accuracy"])
print("Loss (2xNN and 2xDF): ", evaluation_nn_and_df["loss"])
157/157 [==============================] - 2s 8ms/step - loss: 0.3707 - accuracy: 0.8236 Accuracy (2xNN and 2xDF): 0.8235999941825867 Loss (2xNN and 2xDF): 0.3706760108470917
Na koniec dostosujmy nieco bardziej warstwę sieci neuronowej. Zwróć uwagę, że nie dopracowujemy wstępnie wytrenowanego osadzania, ponieważ modele DF od tego zależą (chyba że będziemy je później przeszkolić).
Podsumowując, masz:
print(f"Accuracy (NN #1 and #2 only):\t{evaluation_nn_only['accuracy']:.6f}")
print(f"Accuracy (DF #3 only):\t\t{evaluation_df3_only['accuracy']:.6f}")
print(f"Accuracy (DF #4 only):\t\t{evaluation_df4_only['accuracy']:.6f}")
print("----------------------------------------")
print(f"Accuracy (2xNN and 2xDF):\t{evaluation_nn_and_df['accuracy']:.6f}")
def delta_percent(src_eval, key):
src_acc = src_eval["accuracy"]
final_acc = evaluation_nn_and_df["accuracy"]
increase = final_acc - src_acc
print(f"\t\t\t\t {increase:+.6f} over {key}")
delta_percent(evaluation_nn_only, "NN #1 and #2 only")
delta_percent(evaluation_df3_only, "DF #3 only")
delta_percent(evaluation_df4_only, "DF #4 only")
Accuracy (NN #1 and #2 only): 0.820300 Accuracy (DF #3 only): 0.821800 Accuracy (DF #4 only): 0.822300 ---------------------------------------- Accuracy (2xNN and 2xDF): 0.823600 +0.003300 over NN #1 and #2 only +0.001800 over DF #3 only +0.001300 over DF #4 only
Tutaj widać, że skomponowany model wypada lepiej niż jego poszczególne części. Dlatego tak dobrze działają zespoły.
Co dalej?
W tym przykładzie pokazano, jak połączyć lasy decyzyjne z sieciami neuronowymi. Dodatkowym krokiem byłoby dalsze wspólne szkolenie sieci neuronowej i lasów decyzyjnych.
Ponadto, dla jasności, lasy decyzyjne otrzymały tylko wstępnie przetworzony wkład. Jednak lasy decyzyjne są generalnie świetne i pochłaniają surowe dane. Model zostałby ulepszony poprzez dodanie surowych cech do modeli decyzyjnych lasu.
W tym przykładzie ostateczny model jest średnią przewidywań poszczególnych modeli. To rozwiązanie działa dobrze, jeśli wszystkie modele działają mniej więcej przy tym samym. Jeśli jednak jeden z podmodeli jest bardzo dobry, agregowanie go z innymi modelami może w rzeczywistości być szkodliwe (lub odwrotnie; na przykład spróbuj zmniejszyć liczbę przykładów z 1 tys. i zobacz, jak bardzo szkodzi to sieciom neuronowym; lub włączyć SPARSE_OBLIQUE
rozłam w drugim modelu Losowe Leśnej).