Voir sur TensorFlow.org | Exécuter dans Google Colab | Voir sur GitHub | Télécharger le cahier | Voir le modèle TF Hub |
Bienvenue sur le Colab intermédiaire pour les forêts tensorflow décision (TF-DF). Dans ce colab, vous apprendrez quelques fonctionnalités plus avancées de TF-DF, y compris la façon de traiter avec des fonctionnalités de langage naturel.
Ce colab suppose que vous êtes familiarisé avec les concepts présentés le colab Débutant , notamment sur l'installation sur les TF-DF.
Dans cette collaboration, vous allez :
Entraînez une forêt aléatoire qui utilise des fonctionnalités de texte de manière native sous forme d'ensembles catégoriels.
Former une forêt aléatoire qui consume texte fonctionnalités en utilisant un Hub tensorflow module. Dans ce cadre (apprentissage par transfert), le module est déjà pré-formé sur un large corpus de texte.
Entraînez ensemble un arbre de décision à gradient boosté (GBDT) et un réseau de neurones. Le GBDT consommera la sortie du réseau neuronal.
Installer
# Install TensorFlow Dececision Forests
pip install tensorflow_decision_forests
Installer Wurlitzer . Il peut être utilisé pour afficher les journaux d'entraînement détaillés. Cela n'est nécessaire que dans les colabs.
pip install wurlitzer
Importez les bibliothèques nécessaires.
import tensorflow_decision_forests as tfdf
import os
import numpy as np
import pandas as pd
import tensorflow as tf
import math
try:
from wurlitzer import sys_pipes
except:
from colabtools.googlelog import CaptureLog as sys_pipes
from IPython.core.magic import register_line_magic
from IPython.display import Javascript
WARNING:root:Failure to load the custom c++ tensorflow ops. This error is likely caused the version of TensorFlow and TensorFlow Decision Forests are not compatible. WARNING:root:TF Parameter Server distributed training not available.
La cellule de code cachée limite la hauteur de sortie dans colab.
# Some of the model training logs can cover the full
# screen if not compressed to a smaller viewport.
# This magic allows setting a max height for a cell.
@register_line_magic
def set_cell_height(size):
display(
Javascript("google.colab.output.setIframeHeight(0, true, {maxHeight: " +
str(size) + "})"))
Utiliser du texte brut comme fonctionnalités
TF-DF peut consommer -set catégorique dispose nativement. Les ensembles catégoriels représentent les caractéristiques du texte sous forme de sacs de mots (ou n-grammes).
Par exemple: "The little blue dog"
→ {"the", "little", "blue", "dog"}
Dans cet exemple, vous formerez une forêt au hasard sur le sentiment Stanford Treebank ensemble de données (SST). L'objectif de cet ensemble de données est de phrases classons comme porteur d' un sentiment positif ou négatif. Vous utiliserez la version de classification binaire de l'ensemble de données dans curated tensorflow datasets .
# Install the nighly TensorFlow Datasets package
# TODO: Remove when the release package is fixed.
pip install tfds-nightly -U --quiet
# Load the dataset
import tensorflow_datasets as tfds
all_ds = tfds.load("glue/sst2")
# Display the first 3 examples of the test fold.
for example in all_ds["test"].take(3):
print({attr_name: attr_tensor.numpy() for attr_name, attr_tensor in example.items()})
{'idx': 163, 'label': -1, 'sentence': b'not even the hanson brothers can save it'} {'idx': 131, 'label': -1, 'sentence': b'strong setup and ambitious goals fade as the film descends into unsophisticated scare tactics and b-film thuggery .'} {'idx': 1579, 'label': -1, 'sentence': b'too timid to bring a sense of closure to an ugly chapter of the twentieth century .'} 2021-11-08 12:12:01.807072: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
L'ensemble de données est modifié comme suit :
- Les étiquettes sont des nombres entiers premières dans
{-1, 1}
, mais l'algorithme d'apprentissage des étiquettes entières attend positives , par exemple{0, 1}
. Par conséquent, les étiquettes sont transformées de la manière suivante:new_labels = (original_labels + 1) / 2
. - Une taille de lot de 64 est appliquée pour rendre la lecture de l'ensemble de données plus efficace.
- La
sentence
besoins d'attributs à tokenizés, à savoir"hello world" -> ["hello", "world"]
tout le"hello world" -> ["hello", "world"]
.
Détails: Certains algorithmes d'apprentissage de la forêt de décision ne pas besoin d' un ensemble de données de validation (par exemple , au hasard des forêts) alors que d' autres (par exemple dégradé Boosting dans certains cas). Étant donné que chaque algorithme d'apprentissage sous TF-DF peut utiliser les données de validation différemment, TF-DF gère les fractionnements de formation/validation en interne. Par conséquent, lorsque vous disposez d'ensembles d'apprentissage et de validation, ils peuvent toujours être concaténés en entrée de l'algorithme d'apprentissage.
def prepare_dataset(example):
label = (example["label"] + 1) // 2
return {"sentence" : tf.strings.split(example["sentence"])}, label
train_ds = all_ds["train"].batch(64).map(prepare_dataset)
test_ds = all_ds["validation"].batch(64).map(prepare_dataset)
Enfin, entraînez et évaluez le modèle comme d'habitude. TF-DF détecte automatiquement les caractéristiques catégorielles à valeurs multiples en tant qu'ensemble catégoriel.
%set_cell_height 300
# Specify the model.
model_1 = tfdf.keras.RandomForestModel(num_trees=30)
# Optionally, add evaluation metrics.
model_1.compile(metrics=["accuracy"])
# Train the model.
with sys_pipes():
model_1.fit(x=train_ds)
<IPython.core.display.Javascript object> 1027/1053 [============================>.] - ETA: 0s [INFO kernel.cc:736] Start Yggdrasil model training [INFO kernel.cc:737] Collect training examples [INFO kernel.cc:392] Number of batches: 1053 [INFO kernel.cc:393] Number of examples: 67349 [INFO data_spec_inference.cc:290] 12816 item(s) have been pruned (i.e. they are considered out of dictionary) for the column sentence (2000 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000 [INFO kernel.cc:759] Dataset: Number of records: 67349 Number of columns: 2 Number of columns by type: CATEGORICAL_SET: 1 (50%) CATEGORICAL: 1 (50%) Columns: CATEGORICAL_SET: 1 (50%) 0: "sentence" CATEGORICAL_SET has-dict vocab-size:2001 num-oods:3595 (5.33787%) most-frequent:"the" 27205 (40.3941%) CATEGORICAL: 1 (50%) 1: "__LABEL" CATEGORICAL integerized vocab-size:3 no-ood-item Terminology: nas: Number of non-available (i.e. missing) values. ood: Out of dictionary. manually-defined: Attribute which type is manually defined by the user i.e. the type was not automatically inferred. tokenized: The attribute value is obtained through tokenization. has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string. vocab-size: Number of unique values. [INFO kernel.cc:762] Configure learner [INFO kernel.cc:787] Training config: learner: "RANDOM_FOREST" features: "sentence" label: "__LABEL" task: CLASSIFICATION [yggdrasil_decision_forests.model.random_forest.proto.random_forest_config] { num_trees: 30 decision_tree { max_depth: 16 min_examples: 5 in_split_min_examples_check: true missing_value_policy: GLOBAL_IMPUTATION allow_na_conditions: false categorical_set_greedy_forward { sampling: 0.1 max_num_items: -1 min_item_frequency: 1 } growing_strategy_local { } categorical { cart { } } num_candidate_attributes_ratio: -1 axis_aligned_split { } internal { sorting_strategy: PRESORTED } } winner_take_all_inference: true compute_oob_performances: true compute_oob_variable_importances: false adapt_bootstrap_size_ratio_for_maximum_training_duration: false } [INFO kernel.cc:790] Deployment config: num_threads: 6 [INFO kernel.cc:817] Train model [INFO random_forest.cc:315] Training random forest on 67349 example(s) and 1 feature(s). [INFO random_forest.cc:628] Training of tree 1/30 (tree index:1) done accuracy:0.7412 logloss:9.32811 [INFO random_forest.cc:628] Training of tree 4/30 (tree index:2) done accuracy:0.75669 logloss:5.54597 [INFO random_forest.cc:628] Training of tree 7/30 (tree index:7) done accuracy:0.779932 logloss:3.76263 [INFO random_forest.cc:628] Training of tree 9/30 (tree index:8) done accuracy:0.788283 logloss:3.14015 [INFO random_forest.cc:628] Training of tree 13/30 (tree index:13) done accuracy:0.803553 logloss:1.6681 [INFO random_forest.cc:628] Training of tree 15/30 (tree index:18) done accuracy:0.809139 logloss:1.48232 [INFO random_forest.cc:628] Training of tree 21/30 (tree index:20) done accuracy:0.817067 logloss:0.997885 [INFO random_forest.cc:628] Training of tree 23/30 (tree index:23) done accuracy:0.81845 logloss:0.944225 [INFO random_forest.cc:628] Training of tree 27/30 (tree index:26) done accuracy:0.821066 logloss:0.877389 [INFO random_forest.cc:628] Training of tree 29/30 (tree index:29) done accuracy:0.821571 logloss:0.861307 [INFO random_forest.cc:628] Training of tree 30/30 (tree index:28) done accuracy:0.821274 logloss:0.854486 [INFO random_forest.cc:696] Final OOB metrics: accuracy:0.821274 logloss:0.854486 [INFO kernel.cc:828] Export model in log directory: /tmp/tmpab1ap3d5 [INFO kernel.cc:836] Save model in resources [INFO kernel.cc:988] Loading model from path [INFO decision_forest.cc:590] Model loaded with 30 root(s), 43180 node(s), and 1 input feature(s). [INFO abstract_model.cc:993] Engine "RandomForestGeneric" built [INFO kernel.cc:848] Use fast generic engine 1053/1053 [==============================] - 233s 217ms/step
Dans les journaux précédents, notez que la sentence
est une CATEGORICAL_SET
caractéristique.
Le modèle est évalué comme d'habitude :
evaluation = model_1.evaluate(test_ds)
print(f"BinaryCrossentropyloss: {evaluation[0]}")
print(f"Accuracy: {evaluation[1]}")
14/14 [==============================] - 1s 3ms/step - loss: 0.0000e+00 - accuracy: 0.7638 BinaryCrossentropyloss: 0.0 Accuracy: 0.7637614607810974
L'apparence des journaux d'entraînement est la suivante :
import matplotlib.pyplot as plt
logs = model_1.make_inspector().training_logs()
plt.plot([log.num_trees for log in logs], [log.evaluation.accuracy for log in logs])
plt.xlabel("Number of trees")
plt.ylabel("Out-of-bag accuracy")
pass
Plus d'arbres seraient probablement bénéfiques (j'en suis sûr car j'ai essayé :p).
Utiliser une incorporation de texte pré-entraînée
L'exemple précédent a entraîné une forêt aléatoire à l'aide de fonctionnalités de texte brut. Cet exemple utilisera une intégration TF-Hub pré-entraînée pour convertir des fonctionnalités de texte en une intégration dense, puis formera une forêt aléatoire par-dessus. Dans cette situation, la forêt aléatoire ne « verra » que la sortie numérique de l'intégration (c'est-à-dire qu'elle ne verra pas le texte brut).
Dans cette expérience, utilisera l' Universal-Phrase-Encoder . Différentes intégrations pré-entraînées peuvent être adaptées à différents types de texte (par exemple, une langue différente, une tâche différente) mais aussi pour d'autres types de fonctionnalités structurées (par exemple des images).
Le module d'intégration peut être appliqué à l'un des deux endroits suivants :
- Pendant la préparation du jeu de données.
- Dans la phase de pré-traitement du modèle.
La deuxième option est souvent préférable : l'empaquetage de l'intégration dans le modèle rend le modèle plus facile à utiliser (et plus difficile à abuser).
Installez d'abord TF-Hub :
pip install --upgrade tensorflow-hub
Contrairement à avant, vous n'avez pas besoin de tokeniser le texte.
def prepare_dataset(example):
label = (example["label"] + 1) // 2
return {"sentence" : example["sentence"]}, label
train_ds = all_ds["train"].batch(64).map(prepare_dataset)
test_ds = all_ds["validation"].batch(64).map(prepare_dataset)
%set_cell_height 300
import tensorflow_hub as hub
# NNLM (https://tfhub.dev/google/nnlm-en-dim128/2) is also a good choice.
hub_url = "http://tfhub.dev/google/universal-sentence-encoder/4"
embedding = hub.KerasLayer(hub_url)
sentence = tf.keras.layers.Input(shape=(), name="sentence", dtype=tf.string)
embedded_sentence = embedding(sentence)
raw_inputs = {"sentence": sentence}
processed_inputs = {"embedded_sentence": embedded_sentence}
preprocessor = tf.keras.Model(inputs=raw_inputs, outputs=processed_inputs)
model_2 = tfdf.keras.RandomForestModel(
preprocessing=preprocessor,
num_trees=100)
model_2.compile(metrics=["accuracy"])
with sys_pipes():
model_2.fit(x=train_ds)
<IPython.core.display.Javascript object> 1053/1053 [==============================] - ETA: 0s [INFO kernel.cc:736] Start Yggdrasil model training [INFO kernel.cc:737] Collect training examples [INFO kernel.cc:392] Number of batches: 1053 [INFO kernel.cc:393] Number of examples: 67349 [INFO kernel.cc:759] Dataset: Number of records: 67349 Number of columns: 513 Number of columns by type: NUMERICAL: 512 (99.8051%) CATEGORICAL: 1 (0.194932%) Columns: NUMERICAL: 512 (99.8051%) 0: "embedded_sentence.0" NUMERICAL mean:-0.00405803 min:-0.110598 max:0.113378 sd:0.0382544 1: "embedded_sentence.1" NUMERICAL mean:0.0020755 min:-0.120324 max:0.106003 sd:0.0434171 2: "embedded_sentence.10" NUMERICAL mean:0.0143459 min:-0.1118 max:0.118193 sd:0.039633 3: "embedded_sentence.100" NUMERICAL mean:0.003884 min:-0.104019 max:0.127238 sd:0.0431 4: "embedded_sentence.101" NUMERICAL mean:-0.0132592 min:-0.133774 max:0.125128 sd:0.0465773 5: "embedded_sentence.102" NUMERICAL mean:0.00732224 min:-0.114158 max:0.135181 sd:0.0462208 6: "embedded_sentence.103" NUMERICAL mean:-0.00316622 min:-0.115661 max:0.110651 sd:0.0393422 7: "embedded_sentence.104" NUMERICAL mean:-0.000406039 min:-0.115186 max:0.115727 sd:0.0404569 8: "embedded_sentence.105" NUMERICAL mean:0.01286 min:-0.10478 max:0.116059 sd:0.0408527 9: "embedded_sentence.106" NUMERICAL mean:-0.0200857 min:-0.112344 max:0.115696 sd:0.0348447 10: "embedded_sentence.107" NUMERICAL mean:-0.000881199 min:-0.117538 max:0.128118 sd:0.0397207 11: "embedded_sentence.108" NUMERICAL mean:-0.0153816 min:-0.119853 max:0.111478 sd:0.0408014 12: "embedded_sentence.109" NUMERICAL mean:0.0226631 min:-0.115775 max:0.109245 sd:0.0344709 13: "embedded_sentence.11" NUMERICAL mean:7.16192e-05 min:-0.10631 max:0.107239 sd:0.0399338 14: "embedded_sentence.110" NUMERICAL mean:-0.0117186 min:-0.12628 max:0.0972872 sd:0.043443 15: "embedded_sentence.111" NUMERICAL mean:-0.0195 min:-0.138677 max:0.111032 sd:0.0530712 16: "embedded_sentence.112" NUMERICAL mean:-0.00883525 min:-0.125434 max:0.115491 sd:0.039556 17: "embedded_sentence.113" NUMERICAL mean:-0.0004395 min:-0.106039 max:0.1141 sd:0.0441183 18: "embedded_sentence.114" NUMERICAL mean:-0.00404027 min:-0.131798 max:0.106558 sd:0.040391 19: "embedded_sentence.115" NUMERICAL mean:0.0164961 min:-0.137229 max:0.11088 sd:0.0396261 20: "embedded_sentence.116" NUMERICAL mean:-0.0163338 min:-0.109692 max:0.115104 sd:0.0396108 21: "embedded_sentence.117" NUMERICAL mean:-0.000866382 min:-0.111258 max:0.110021 sd:0.0413076 22: "embedded_sentence.118" NUMERICAL mean:0.00925641 min:-0.117275 max:0.109073 sd:0.0392531 23: "embedded_sentence.119" NUMERICAL mean:0.0111224 min:-0.108271 max:0.11018 sd:0.0438516 24: "embedded_sentence.12" NUMERICAL mean:-0.0115011 min:-0.115238 max:0.115996 sd:0.039107 25: "embedded_sentence.120" NUMERICAL mean:-0.0109583 min:-0.117243 max:0.113314 sd:0.03753 26: "embedded_sentence.121" NUMERICAL mean:0.0143342 min:-0.109885 max:0.121471 sd:0.0401907 27: "embedded_sentence.122" NUMERICAL mean:-0.00603129 min:-0.111126 max:0.106422 sd:0.0401383 28: "embedded_sentence.123" NUMERICAL mean:-0.00175511 min:-0.115219 max:0.103571 sd:0.0388962 29: "embedded_sentence.124" NUMERICAL mean:-0.0119755 min:-0.119062 max:0.122632 sd:0.0447561 30: "embedded_sentence.125" NUMERICAL mean:0.00210507 min:-0.116783 max:0.125758 sd:0.0469827 31: "embedded_sentence.126" NUMERICAL mean:-0.0166424 min:-0.109771 max:0.13027 sd:0.0399639 32: "embedded_sentence.127" NUMERICAL mean:-0.0462275 min:-0.137916 max:0.106133 sd:0.0478679 33: "embedded_sentence.128" NUMERICAL mean:0.0101449 min:-0.134851 max:0.118003 sd:0.0415072 34: "embedded_sentence.129" NUMERICAL mean:0.0119622 min:-0.106398 max:0.122529 sd:0.047894 35: "embedded_sentence.13" NUMERICAL mean:-0.0179365 min:-0.133052 max:0.120982 sd:0.0461472 36: "embedded_sentence.130" NUMERICAL mean:-0.0109302 min:-0.127096 max:0.102555 sd:0.0407236 37: "embedded_sentence.131" NUMERICAL mean:-2.30421e-05 min:-0.0958128 max:0.116109 sd:0.0393919 38: "embedded_sentence.132" NUMERICAL mean:0.00622466 min:-0.118524 max:0.171935 sd:0.0435631 39: "embedded_sentence.133" NUMERICAL mean:0.00537511 min:-0.0999398 max:0.143991 sd:0.0431652 40: "embedded_sentence.134" NUMERICAL mean:0.0111946 min:-0.101547 max:0.105716 sd:0.0365295 41: "embedded_sentence.135" NUMERICAL mean:-0.0123165 min:-0.118347 max:0.113619 sd:0.0422525 42: "embedded_sentence.136" NUMERICAL mean:0.00882626 min:-0.118642 max:0.115052 sd:0.0393646 43: "embedded_sentence.137" NUMERICAL mean:0.0106701 min:-0.108036 max:0.109746 sd:0.0405698 44: "embedded_sentence.138" NUMERICAL mean:-0.0130655 min:-0.148064 max:0.118745 sd:0.047092 45: "embedded_sentence.139" NUMERICAL mean:0.00256777 min:-0.108547 max:0.102547 sd:0.0388182 46: "embedded_sentence.14" NUMERICAL mean:0.00090757 min:-0.124092 max:0.111964 sd:0.0393761 47: "embedded_sentence.140" NUMERICAL mean:-0.00255201 min:-0.113298 max:0.120327 sd:0.0469564 48: "embedded_sentence.141" NUMERICAL mean:-0.0123127 min:-0.124039 max:0.110528 sd:0.047218 49: "embedded_sentence.142" NUMERICAL mean:0.00659571 min:-0.106909 max:0.126327 sd:0.0444828 50: "embedded_sentence.143" NUMERICAL mean:0.00838607 min:-0.121819 max:0.108286 sd:0.0409403 51: "embedded_sentence.144" NUMERICAL mean:-0.00504916 min:-0.117741 max:0.109832 sd:0.0402179 52: "embedded_sentence.145" NUMERICAL mean:-0.0135 min:-0.112358 max:0.108238 sd:0.0393695 53: "embedded_sentence.146" NUMERICAL mean:-0.00551706 min:-0.108132 max:0.103118 sd:0.0375181 54: "embedded_sentence.147" NUMERICAL mean:0.00226707 min:-0.109358 max:0.117688 sd:0.0416268 55: "embedded_sentence.148" NUMERICAL mean:-0.0083477 min:-0.113886 max:0.105174 sd:0.0379074 56: "embedded_sentence.149" NUMERICAL mean:-0.0029158 min:-0.104327 max:0.10898 sd:0.0394245 57: "embedded_sentence.15" NUMERICAL mean:-0.0465314 min:-0.127274 max:0.115007 sd:0.0410307 58: "embedded_sentence.150" NUMERICAL mean:-0.00857055 min:-0.11757 max:0.108206 sd:0.0416898 59: "embedded_sentence.151" NUMERICAL mean:0.00697777 min:-0.104269 max:0.109967 sd:0.0353302 60: "embedded_sentence.152" NUMERICAL mean:-0.0220037 min:-0.122602 max:0.105503 sd:0.0429071 61: "embedded_sentence.153" NUMERICAL mean:-0.00103943 min:-0.109326 max:0.112115 sd:0.0413219 62: "embedded_sentence.154" NUMERICAL mean:-0.010306 min:-0.106116 max:0.112624 sd:0.0392094 63: "embedded_sentence.155" NUMERICAL mean:-0.0128503 min:-0.133511 max:0.129721 sd:0.0417087 64: "embedded_sentence.156" NUMERICAL mean:-0.00796017 min:-0.10801 max:0.111555 sd:0.0401771 65: "embedded_sentence.157" NUMERICAL mean:-0.0263644 min:-0.135057 max:0.131898 sd:0.0473006 66: "embedded_sentence.158" NUMERICAL mean:0.0157188 min:-0.109795 max:0.13194 sd:0.0423631 67: "embedded_sentence.159" NUMERICAL mean:0.00616692 min:-0.0996693 max:0.121898 sd:0.0405747 68: "embedded_sentence.16" NUMERICAL mean:0.0122186 min:-0.132531 max:0.112023 sd:0.0412513 69: "embedded_sentence.160" NUMERICAL mean:0.00140896 min:-0.125797 max:0.10415 sd:0.0422833 70: "embedded_sentence.161" NUMERICAL mean:-0.00968098 min:-0.107129 max:0.109673 sd:0.0389125 71: "embedded_sentence.162" NUMERICAL mean:0.0174977 min:-0.102559 max:0.117249 sd:0.0394065 72: "embedded_sentence.163" NUMERICAL mean:-0.01559 min:-0.117529 max:0.132716 sd:0.0422287 73: "embedded_sentence.164" NUMERICAL mean:0.0103332 min:-0.131635 max:0.117116 sd:0.0432647 74: "embedded_sentence.165" NUMERICAL mean:0.0164754 min:-0.111395 max:0.106868 sd:0.03591 75: "embedded_sentence.166" NUMERICAL mean:-0.0300909 min:-0.110079 max:0.138071 sd:0.0393771 76: "embedded_sentence.167" NUMERICAL mean:-0.00284721 min:-0.113047 max:0.1113 sd:0.0402787 77: "embedded_sentence.168" NUMERICAL mean:0.0128449 min:-0.123295 max:0.101678 sd:0.035443 78: "embedded_sentence.169" NUMERICAL mean:-0.0018307 min:-0.113497 max:0.108755 sd:0.0385736 79: "embedded_sentence.17" NUMERICAL mean:0.0112924 min:-0.118483 max:0.109047 sd:0.0411375 80: "embedded_sentence.170" NUMERICAL mean:-0.0154471 min:-0.123997 max:0.0995884 sd:0.039095 81: "embedded_sentence.171" NUMERICAL mean:-0.0115266 min:-0.135629 max:0.111586 sd:0.0564499 82: "embedded_sentence.172" NUMERICAL mean:-0.00305818 min:-0.108149 max:0.125287 sd:0.0416153 83: "embedded_sentence.173" NUMERICAL mean:-0.0192183 min:-0.128661 max:0.111586 sd:0.0445312 84: "embedded_sentence.174" NUMERICAL mean:-0.00547071 min:-0.106778 max:0.107318 sd:0.0412694 85: "embedded_sentence.175" NUMERICAL mean:0.00303105 min:-0.114183 max:0.11671 sd:0.037753 86: "embedded_sentence.176" NUMERICAL mean:0.0200632 min:-0.119154 max:0.12262 sd:0.0449386 87: "embedded_sentence.177" NUMERICAL mean:0.00830421 min:-0.106867 max:0.108159 sd:0.04212 88: "embedded_sentence.178" NUMERICAL mean:0.00879771 min:-0.119236 max:0.0975505 sd:0.0365596 89: "embedded_sentence.179" NUMERICAL mean:-0.0224472 min:-0.141699 max:0.121597 sd:0.0451563 90: "embedded_sentence.18" NUMERICAL mean:0.0161367 min:-0.103659 max:0.106467 sd:0.0396646 91: "embedded_sentence.180" NUMERICAL mean:0.00700458 min:-0.122243 max:0.106828 sd:0.0406674 92: "embedded_sentence.181" NUMERICAL mean:0.015665 min:-0.123784 max:0.117493 sd:0.0423638 93: "embedded_sentence.182" NUMERICAL mean:0.00455087 min:-0.130433 max:0.129947 sd:0.0468312 94: "embedded_sentence.183" NUMERICAL mean:0.00469912 min:-0.105513 max:0.115268 sd:0.0422015 95: "embedded_sentence.184" NUMERICAL mean:0.00118913 min:-0.132085 max:0.119005 sd:0.0425006 96: "embedded_sentence.185" NUMERICAL mean:-0.0091211 min:-0.105384 max:0.107321 sd:0.0394833 97: "embedded_sentence.186" NUMERICAL mean:0.00847289 min:-0.100142 max:0.11416 sd:0.0354507 98: "embedded_sentence.187" NUMERICAL mean:0.00401229 min:-0.0997345 max:0.0985512 sd:0.0330015 99: "embedded_sentence.188" NUMERICAL mean:0.0375059 min:-0.107009 max:0.147423 sd:0.0457626 100: "embedded_sentence.189" NUMERICAL mean:-0.0108558 min:-0.158798 max:0.124698 sd:0.0429543 101: "embedded_sentence.19" NUMERICAL mean:0.000475908 min:-0.126049 max:0.109106 sd:0.0416907 102: "embedded_sentence.190" NUMERICAL mean:0.0055649 min:-0.102637 max:0.112907 sd:0.0428818 103: "embedded_sentence.191" NUMERICAL mean:0.0115727 min:-0.0992453 max:0.114756 sd:0.0385606 104: "embedded_sentence.192" NUMERICAL mean:0.0188207 min:-0.10799 max:0.126446 sd:0.0480458 105: "embedded_sentence.193" NUMERICAL mean:-0.0231128 min:-0.125829 max:0.098485 sd:0.0413616 106: "embedded_sentence.194" NUMERICAL mean:-0.0125518 min:-0.118983 max:0.111524 sd:0.0394032 107: "embedded_sentence.195" NUMERICAL mean:-0.00734374 min:-0.140773 max:0.124731 sd:0.048662 108: "embedded_sentence.196" NUMERICAL mean:0.0147101 min:-0.109208 max:0.114207 sd:0.0392372 109: "embedded_sentence.197" NUMERICAL mean:0.00382817 min:-0.0960263 max:0.109744 sd:0.0343786 110: "embedded_sentence.198" NUMERICAL mean:0.0148358 min:-0.121261 max:0.137886 sd:0.0396124 111: "embedded_sentence.199" NUMERICAL mean:0.0139377 min:-0.133057 max:0.129123 sd:0.0434494 112: "embedded_sentence.2" NUMERICAL mean:0.00763253 min:-0.102393 max:0.126418 sd:0.0391092 113: "embedded_sentence.20" NUMERICAL mean:0.0067624 min:-0.117482 max:0.140442 sd:0.0473874 114: "embedded_sentence.200" NUMERICAL mean:-0.022174 min:-0.135182 max:0.0998059 sd:0.0447171 115: "embedded_sentence.201" NUMERICAL mean:0.00918432 min:-0.129768 max:0.104146 sd:0.0407455 116: "embedded_sentence.202" NUMERICAL mean:6.68974e-05 min:-0.108528 max:0.112123 sd:0.039669 117: "embedded_sentence.203" NUMERICAL mean:-0.0211792 min:-0.138447 max:0.151201 sd:0.0475548 118: "embedded_sentence.204" NUMERICAL mean:0.0149458 min:-0.114192 max:0.121993 sd:0.0451805 119: "embedded_sentence.205" NUMERICAL mean:-0.000877425 min:-0.106281 max:0.110069 sd:0.0399283 120: "embedded_sentence.206" NUMERICAL mean:0.00135042 min:-0.122458 max:0.133155 sd:0.0490798 121: "embedded_sentence.207" NUMERICAL mean:-0.00564686 min:-0.0980346 max:0.124534 sd:0.0381495 122: "embedded_sentence.208" NUMERICAL mean:-0.0137386 min:-0.104712 max:0.116268 sd:0.0380542 123: "embedded_sentence.209" NUMERICAL mean:-0.000932724 min:-0.120575 max:0.106782 sd:0.0389735 124: "embedded_sentence.21" NUMERICAL mean:-0.0103802 min:-0.141084 max:0.11384 sd:0.0543033 125: "embedded_sentence.210" NUMERICAL mean:-0.0221436 min:-0.11615 max:0.110612 sd:0.0375885 126: "embedded_sentence.211" NUMERICAL mean:0.00739621 min:-0.107881 max:0.139283 sd:0.0380559 127: "embedded_sentence.212" NUMERICAL mean:0.000771754 min:-0.130277 max:0.118151 sd:0.0457612 128: "embedded_sentence.213" NUMERICAL mean:-0.00631693 min:-0.113811 max:0.122369 sd:0.0420019 129: "embedded_sentence.214" NUMERICAL mean:-0.0190752 min:-0.130814 max:0.12256 sd:0.0462656 130: "embedded_sentence.215" NUMERICAL mean:0.00351438 min:-0.119497 max:0.112531 sd:0.0389063 131: "embedded_sentence.216" NUMERICAL mean:-0.00563816 min:-0.113327 max:0.108573 sd:0.0398438 132: "embedded_sentence.217" NUMERICAL mean:-0.0128165 min:-0.152494 max:0.112129 sd:0.0435284 133: "embedded_sentence.218" NUMERICAL mean:-0.000746105 min:-0.115932 max:0.103357 sd:0.0396475 134: "embedded_sentence.219" NUMERICAL mean:0.00706257 min:-0.105737 max:0.115808 sd:0.0415758 135: "embedded_sentence.22" NUMERICAL mean:0.00470285 min:-0.108062 max:0.127381 sd:0.0465233 136: "embedded_sentence.220" NUMERICAL mean:0.000614336 min:-0.120866 max:0.10502 sd:0.036915 137: "embedded_sentence.221" NUMERICAL mean:-0.00315481 min:-0.110209 max:0.126778 sd:0.0398762 138: "embedded_sentence.222" NUMERICAL mean:-0.0055338 min:-0.112974 max:0.111057 sd:0.0367833 139: "embedded_sentence.223" NUMERICAL mean:0.0129532 min:-0.108908 max:0.112232 sd:0.0406737 140: "embedded_sentence.224" NUMERICAL mean:-0.0195448 min:-0.112833 max:0.122565 sd:0.0423641 141: "embedded_sentence.225" NUMERICAL mean:0.00715641 min:-0.136763 max:0.123146 sd:0.0455536 142: "embedded_sentence.226" NUMERICAL mean:0.0105978 min:-0.121166 max:0.125465 sd:0.0433322 143: "embedded_sentence.227" NUMERICAL mean:-0.00822156 min:-0.131487 max:0.125193 sd:0.0440489 144: "embedded_sentence.228" NUMERICAL mean:0.0119113 min:-0.109956 max:0.107868 sd:0.0382855 145: "embedded_sentence.229" NUMERICAL mean:-0.00739044 min:-0.116468 max:0.109886 sd:0.0406385 146: "embedded_sentence.23" NUMERICAL mean:0.00203851 min:-0.116632 max:0.116226 sd:0.0400387 147: "embedded_sentence.230" NUMERICAL mean:0.00819752 min:-0.100016 max:0.125019 sd:0.041894 148: "embedded_sentence.231" NUMERICAL mean:-0.00420582 min:-0.139816 max:0.138647 sd:0.0446602 149: "embedded_sentence.232" NUMERICAL mean:0.00810722 min:-0.11301 max:0.106853 sd:0.0400325 150: "embedded_sentence.233" NUMERICAL mean:0.0561205 min:-0.110581 max:0.182053 sd:0.0645425 151: "embedded_sentence.234" NUMERICAL mean:0.0202212 min:-0.109987 max:0.116562 sd:0.0374199 152: "embedded_sentence.235" NUMERICAL mean:-0.0125547 min:-0.104766 max:0.115993 sd:0.0383767 153: "embedded_sentence.236" NUMERICAL mean:0.00228544 min:-0.126092 max:0.125991 sd:0.0403744 154: "embedded_sentence.237" NUMERICAL mean:-0.00306858 min:-0.107907 max:0.109284 sd:0.0409564 155: "embedded_sentence.238" NUMERICAL mean:-0.00930815 min:-0.156445 max:0.107558 sd:0.0437983 156: "embedded_sentence.239" NUMERICAL mean:0.00958206 min:-0.112118 max:0.1195 sd:0.0451739 157: "embedded_sentence.24" NUMERICAL mean:-0.000927636 min:-0.127188 max:0.105079 sd:0.042448 158: "embedded_sentence.240" NUMERICAL mean:-0.00998686 min:-0.125181 max:0.107936 sd:0.0414998 159: "embedded_sentence.241" NUMERICAL mean:-0.00128156 min:-0.103688 max:0.109599 sd:0.0377828 160: "embedded_sentence.242" NUMERICAL mean:-0.000524396 min:-0.141003 max:0.114016 sd:0.050088 161: "embedded_sentence.243" NUMERICAL mean:-0.000359091 min:-0.114483 max:0.130721 sd:0.0418654 162: "embedded_sentence.244" NUMERICAL mean:0.0161613 min:-0.103932 max:0.116754 sd:0.0401808 163: "embedded_sentence.245" NUMERICAL mean:0.0275608 min:-0.127227 max:0.143614 sd:0.0465002 164: "embedded_sentence.246" NUMERICAL mean:-0.0199729 min:-0.107911 max:0.114303 sd:0.037755 165: "embedded_sentence.247" NUMERICAL mean:-0.00782877 min:-0.104362 max:0.11543 sd:0.041834 166: "embedded_sentence.248" NUMERICAL mean:-0.000544771 min:-0.159329 max:0.155847 sd:0.0543164 167: "embedded_sentence.249" NUMERICAL mean:-0.0101255 min:-0.116432 max:0.107342 sd:0.0401119 168: "embedded_sentence.25" NUMERICAL mean:0.0111641 min:-0.114852 max:0.110724 sd:0.0379149 169: "embedded_sentence.250" NUMERICAL mean:0.0161291 min:-0.12229 max:0.109533 sd:0.0372791 170: "embedded_sentence.251" NUMERICAL mean:-0.000411384 min:-0.118338 max:0.116215 sd:0.0459737 171: "embedded_sentence.252" NUMERICAL mean:-0.00268351 min:-0.108327 max:0.109842 sd:0.037631 172: "embedded_sentence.253" NUMERICAL mean:-0.00246653 min:-0.107393 max:0.114115 sd:0.0386872 173: "embedded_sentence.254" NUMERICAL mean:0.00223856 min:-0.122731 max:0.140702 sd:0.0447316 174: "embedded_sentence.255" NUMERICAL mean:0.00186748 min:-0.128662 max:0.107003 sd:0.0409741 175: "embedded_sentence.256" NUMERICAL mean:0.00786944 min:-0.113685 max:0.118287 sd:0.0418721 176: "embedded_sentence.257" NUMERICAL mean:-0.00450053 min:-0.117383 max:0.138567 sd:0.0535368 177: "embedded_sentence.258" NUMERICAL mean:0.0128997 min:-0.109905 max:0.118147 sd:0.0393103 178: "embedded_sentence.259" NUMERICAL mean:0.00794854 min:-0.10424 max:0.111261 sd:0.0380286 179: "embedded_sentence.26" NUMERICAL mean:-0.00327954 min:-0.105336 max:0.104934 sd:0.0414663 180: "embedded_sentence.260" NUMERICAL mean:-0.0117858 min:-0.116906 max:0.103426 sd:0.0360148 181: "embedded_sentence.261" NUMERICAL mean:0.00338883 min:-0.113532 max:0.114904 sd:0.0432436 182: "embedded_sentence.262" NUMERICAL mean:0.00238206 min:-0.149582 max:0.13639 sd:0.0507155 183: "embedded_sentence.263" NUMERICAL mean:-0.0103074 min:-0.140884 max:0.117382 sd:0.0508164 184: "embedded_sentence.264" NUMERICAL mean:0.00478302 min:-0.104717 max:0.125411 sd:0.0411592 185: "embedded_sentence.265" NUMERICAL mean:0.00418632 min:-0.111659 max:0.125069 sd:0.0400184 186: "embedded_sentence.266" NUMERICAL mean:-0.0065648 min:-0.115424 max:0.115422 sd:0.040284 187: "embedded_sentence.267" NUMERICAL mean:-0.0108974 min:-0.140032 max:0.108537 sd:0.0416651 188: "embedded_sentence.268" NUMERICAL mean:0.021397 min:-0.110922 max:0.120673 sd:0.0416704 189: "embedded_sentence.269" NUMERICAL mean:-0.00266875 min:-0.108534 max:0.116014 sd:0.0454318 190: "embedded_sentence.27" NUMERICAL mean:-0.00290058 min:-0.116482 max:0.113443 sd:0.0406192 191: "embedded_sentence.270" NUMERICAL mean:0.00904486 min:-0.130418 max:0.158166 sd:0.0548252 192: "embedded_sentence.271" NUMERICAL mean:0.00193987 min:-0.137558 max:0.14649 sd:0.0508115 193: "embedded_sentence.272" NUMERICAL mean:-0.000186977 min:-0.116413 max:0.0989802 sd:0.0402487 194: "embedded_sentence.273" NUMERICAL mean:0.006326 min:-0.115043 max:0.107482 sd:0.0416155 195: "embedded_sentence.274" NUMERICAL mean:-0.000278915 min:-0.115695 max:0.105325 sd:0.0406986 196: "embedded_sentence.275" NUMERICAL mean:-0.0102959 min:-0.099434 max:0.128947 sd:0.0361354 197: "embedded_sentence.276" NUMERICAL mean:-0.0207918 min:-0.116139 max:0.110566 sd:0.0419115 198: "embedded_sentence.277" NUMERICAL mean:-0.0146824 min:-0.127741 max:0.101543 sd:0.0430422 199: "embedded_sentence.278" NUMERICAL mean:0.0187157 min:-0.109012 max:0.119525 sd:0.0469243 200: "embedded_sentence.279" NUMERICAL mean:0.0080616 min:-0.117272 max:0.138517 sd:0.0500966 201: "embedded_sentence.28" NUMERICAL mean:0.0028253 min:-0.110413 max:0.123963 sd:0.0427868 202: "embedded_sentence.280" NUMERICAL mean:0.0017946 min:-0.129883 max:0.103422 sd:0.0466893 203: "embedded_sentence.281" NUMERICAL mean:-0.00546588 min:-0.123351 max:0.122337 sd:0.044948 204: "embedded_sentence.282" NUMERICAL mean:-0.00352354 min:-0.114364 max:0.122504 sd:0.0421913 205: "embedded_sentence.283" NUMERICAL mean:0.00593286 min:-0.104898 max:0.11458 sd:0.0418491 206: "embedded_sentence.284" NUMERICAL mean:-0.0136068 min:-0.112147 max:0.110563 sd:0.0402539 207: "embedded_sentence.285" NUMERICAL mean:-0.0148682 min:-0.143126 max:0.121947 sd:0.0652969 208: "embedded_sentence.286" NUMERICAL mean:0.00865603 min:-0.105883 max:0.116117 sd:0.0411941 209: "embedded_sentence.287" NUMERICAL mean:0.00838776 min:-0.103808 max:0.118732 sd:0.0400033 210: "embedded_sentence.288" NUMERICAL mean:-0.004587 min:-0.126515 max:0.110044 sd:0.0429655 211: "embedded_sentence.289" NUMERICAL mean:0.022459 min:-0.101127 max:0.122341 sd:0.0412413 212: "embedded_sentence.29" NUMERICAL mean:0.0282239 min:-0.104219 max:0.143075 sd:0.0487783 213: "embedded_sentence.290" NUMERICAL mean:-0.010227 min:-0.104646 max:0.11767 sd:0.0391759 214: "embedded_sentence.291" NUMERICAL mean:0.0479376 min:-0.118972 max:0.140115 sd:0.0441115 215: "embedded_sentence.292" NUMERICAL mean:-0.012885 min:-0.13523 max:0.1102 sd:0.044191 216: "embedded_sentence.293" NUMERICAL mean:-0.00582894 min:-0.118518 max:0.1084 sd:0.0424979 217: "embedded_sentence.294" NUMERICAL mean:0.00673141 min:-0.123867 max:0.135324 sd:0.0469895 218: "embedded_sentence.295" NUMERICAL mean:0.00592276 min:-0.109027 max:0.121098 sd:0.0376266 219: "embedded_sentence.296" NUMERICAL mean:-0.000323969 min:-0.132564 max:0.106466 sd:0.0429391 220: "embedded_sentence.297" NUMERICAL mean:0.00159954 min:-0.10937 max:0.112449 sd:0.0405972 221: "embedded_sentence.298" NUMERICAL mean:0.0203997 min:-0.130037 max:0.102531 sd:0.0376077 222: "embedded_sentence.299" NUMERICAL mean:0.00443814 min:-0.126552 max:0.0985593 sd:0.0406299 223: "embedded_sentence.3" NUMERICAL mean:-0.000732218 min:-0.109626 max:0.10121 sd:0.0369311 224: "embedded_sentence.30" NUMERICAL mean:0.0119399 min:-0.10224 max:0.123741 sd:0.0407582 225: "embedded_sentence.300" NUMERICAL mean:0.00640362 min:-0.109722 max:0.113832 sd:0.042602 226: "embedded_sentence.301" NUMERICAL mean:0.00300331 min:-0.10537 max:0.1057 sd:0.0400365 227: "embedded_sentence.302" NUMERICAL mean:0.0105726 min:-0.125406 max:0.125337 sd:0.0386879 228: "embedded_sentence.303" NUMERICAL mean:-0.00682487 min:-0.119722 max:0.122495 sd:0.0397744 229: "embedded_sentence.304" NUMERICAL mean:0.0134615 min:-0.113637 max:0.104308 sd:0.0364568 230: "embedded_sentence.305" NUMERICAL mean:0.00644908 min:-0.106984 max:0.118193 sd:0.0378877 231: "embedded_sentence.306" NUMERICAL mean:0.00721292 min:-0.106136 max:0.112877 sd:0.0413748 232: "embedded_sentence.307" NUMERICAL mean:-0.00382715 min:-0.104953 max:0.0990278 sd:0.0384972 233: "embedded_sentence.308" NUMERICAL mean:6.43178e-05 min:-0.120151 max:0.118558 sd:0.0443767 234: "embedded_sentence.309" NUMERICAL mean:0.00712577 min:-0.118636 max:0.108645 sd:0.0429865 235: "embedded_sentence.31" NUMERICAL mean:-0.00879883 min:-0.106952 max:0.114961 sd:0.0397046 236: "embedded_sentence.310" NUMERICAL mean:0.00668597 min:-0.10649 max:0.116392 sd:0.040195 237: "embedded_sentence.311" NUMERICAL mean:-0.000903381 min:-0.119513 max:0.131158 sd:0.0420348 238: "embedded_sentence.312" NUMERICAL mean:0.0107332 min:-0.113776 max:0.112523 sd:0.0408102 239: "embedded_sentence.313" NUMERICAL mean:0.00918225 min:-0.103286 max:0.106814 sd:0.03942 240: "embedded_sentence.314" NUMERICAL mean:0.00465102 min:-0.110279 max:0.117252 sd:0.0393894 241: "embedded_sentence.315" NUMERICAL mean:-0.00789822 min:-0.107114 max:0.11401 sd:0.0388347 242: "embedded_sentence.316" NUMERICAL mean:0.003646 min:-0.115399 max:0.102757 sd:0.0402218 243: "embedded_sentence.317" NUMERICAL mean:0.015828 min:-0.115321 max:0.130694 sd:0.0440749 244: "embedded_sentence.318" NUMERICAL mean:-0.0205412 min:-0.115586 max:0.144723 sd:0.0485943 245: "embedded_sentence.319" NUMERICAL mean:0.00661137 min:-0.121465 max:0.11194 sd:0.0411842 246: "embedded_sentence.32" NUMERICAL mean:-0.00641689 min:-0.109096 max:0.115278 sd:0.0395207 247: "embedded_sentence.320" NUMERICAL mean:-0.0148287 min:-0.103164 max:0.116781 sd:0.0390764 248: "embedded_sentence.321" NUMERICAL mean:-0.0216578 min:-0.124605 max:0.115269 sd:0.0434055 249: "embedded_sentence.322" NUMERICAL mean:0.00985385 min:-0.100306 max:0.1268 sd:0.0390696 250: "embedded_sentence.323" NUMERICAL mean:0.00628717 min:-0.0997497 max:0.119355 sd:0.0396103 251: "embedded_sentence.324" NUMERICAL mean:-0.00196284 min:-0.121922 max:0.120337 sd:0.0459949 252: "embedded_sentence.325" NUMERICAL mean:-0.00537022 min:-0.110575 max:0.123165 sd:0.0455996 253: "embedded_sentence.326" NUMERICAL mean:0.00455174 min:-0.115791 max:0.104665 sd:0.0401681 254: "embedded_sentence.327" NUMERICAL mean:-0.00533296 min:-0.130506 max:0.112283 sd:0.0453555 255: "embedded_sentence.328" NUMERICAL mean:-0.00440578 min:-0.126272 max:0.103891 sd:0.041464 256: "embedded_sentence.329" NUMERICAL mean:-0.0101936 min:-0.108874 max:0.111676 sd:0.0395482 257: "embedded_sentence.33" NUMERICAL mean:0.00148918 min:-0.111798 max:0.115585 sd:0.0406788 258: "embedded_sentence.330" NUMERICAL mean:0.00703036 min:-0.108652 max:0.103578 sd:0.0400975 259: "embedded_sentence.331" NUMERICAL mean:0.000541923 min:-0.109862 max:0.10999 sd:0.0408574 260: "embedded_sentence.332" NUMERICAL mean:0.0188891 min:-0.112872 max:0.118079 sd:0.0397373 261: "embedded_sentence.333" NUMERICAL mean:-0.012192 min:-0.133506 max:0.13836 sd:0.0512842 262: "embedded_sentence.334" NUMERICAL mean:-0.0265024 min:-0.126857 max:0.097852 sd:0.0420318 263: "embedded_sentence.335" NUMERICAL mean:0.00215234 min:-0.111504 max:0.116062 sd:0.038159 264: "embedded_sentence.336" NUMERICAL mean:-0.00825738 min:-0.125886 max:0.10212 sd:0.0376238 265: "embedded_sentence.337" NUMERICAL mean:-0.0055194 min:-0.105159 max:0.110274 sd:0.0404973 266: "embedded_sentence.338" NUMERICAL mean:0.0111058 min:-0.103003 max:0.134575 sd:0.0376746 267: "embedded_sentence.339" NUMERICAL mean:0.00451027 min:-0.116598 max:0.114548 sd:0.0434438 268: "embedded_sentence.34" NUMERICAL mean:-0.00225704 min:-0.116123 max:0.116634 sd:0.0410024 269: "embedded_sentence.340" NUMERICAL mean:0.0209382 min:-0.109457 max:0.119971 sd:0.0448743 270: "embedded_sentence.341" NUMERICAL mean:0.00896807 min:-0.121829 max:0.10898 sd:0.0399955 271: "embedded_sentence.342" NUMERICAL mean:-0.00661843 min:-0.113602 max:0.112046 sd:0.0417717 272: "embedded_sentence.343" NUMERICAL mean:-0.00921778 min:-0.112399 max:0.116532 sd:0.0399069 273: "embedded_sentence.344" NUMERICAL mean:0.00135801 min:-0.121002 max:0.0829257 sd:0.0322146 274: "embedded_sentence.345" NUMERICAL mean:0.00347003 min:-0.131471 max:0.101491 sd:0.0404394 275: "embedded_sentence.346" NUMERICAL mean:-0.00118125 min:-0.14804 max:0.11391 sd:0.0423848 276: "embedded_sentence.347" NUMERICAL mean:-0.00893261 min:-0.125488 max:0.109213 sd:0.0498338 277: "embedded_sentence.348" NUMERICAL mean:-0.0112279 min:-0.119783 max:0.106986 sd:0.039883 278: "embedded_sentence.349" NUMERICAL mean:0.00921196 min:-0.108645 max:0.124485 sd:0.0427417 279: "embedded_sentence.35" NUMERICAL mean:0.0139088 min:-0.11982 max:0.117347 sd:0.0412498 280: "embedded_sentence.350" NUMERICAL mean:-0.0064119 min:-0.11853 max:0.108147 sd:0.0396107 281: "embedded_sentence.351" NUMERICAL mean:0.00046816 min:-0.133059 max:0.106031 sd:0.0419676 282: "embedded_sentence.352" NUMERICAL mean:0.00143986 min:-0.119083 max:0.0987318 sd:0.0358907 283: "embedded_sentence.353" NUMERICAL mean:0.00247002 min:-0.109389 max:0.118887 sd:0.0416032 284: "embedded_sentence.354" NUMERICAL mean:0.000102879 min:-0.139157 max:0.0995683 sd:0.0394998 285: "embedded_sentence.355" NUMERICAL mean:-0.00525663 min:-0.146684 max:0.104288 sd:0.0406929 286: "embedded_sentence.356" NUMERICAL mean:-0.0884722 min:-0.132905 max:0.0538598 sd:0.0108211 287: "embedded_sentence.357" NUMERICAL mean:0.00677648 min:-0.110339 max:0.110136 sd:0.0402613 288: "embedded_sentence.358" NUMERICAL mean:0.00630266 min:-0.111695 max:0.115859 sd:0.0427588 289: "embedded_sentence.359" NUMERICAL mean:0.00225805 min:-0.126003 max:0.117678 sd:0.0444635 290: "embedded_sentence.36" NUMERICAL mean:-0.00414969 min:-0.117693 max:0.10138 sd:0.0421129 291: "embedded_sentence.360" NUMERICAL mean:-0.00827234 min:-0.133543 max:0.115376 sd:0.0466799 292: "embedded_sentence.361" NUMERICAL mean:-0.00625222 min:-0.10512 max:0.123856 sd:0.0418715 293: "embedded_sentence.362" NUMERICAL mean:0.0651293 min:-0.11562 max:0.153915 sd:0.0359 294: "embedded_sentence.363" NUMERICAL mean:0.00968887 min:-0.115793 max:0.11435 sd:0.0422501 295: "embedded_sentence.364" NUMERICAL mean:0.00449241 min:-0.132071 max:0.103237 sd:0.0373741 296: "embedded_sentence.365" NUMERICAL mean:-0.016221 min:-0.113495 max:0.106975 sd:0.0425689 297: "embedded_sentence.366" NUMERICAL mean:0.0112515 min:-0.154925 max:0.151612 sd:0.0513015 298: "embedded_sentence.367" NUMERICAL mean:-5.21384e-05 min:-0.11585 max:0.112307 sd:0.0391906 299: "embedded_sentence.368" NUMERICAL mean:-0.00112394 min:-0.121213 max:0.126588 sd:0.044652 300: "embedded_sentence.369" NUMERICAL mean:0.00485578 min:-0.106476 max:0.115632 sd:0.041426 301: "embedded_sentence.37" NUMERICAL mean:0.00156116 min:-0.114707 max:0.128423 sd:0.0410256 302: "embedded_sentence.370" NUMERICAL mean:-0.0174785 min:-0.114634 max:0.104434 sd:0.0382088 303: "embedded_sentence.371" NUMERICAL mean:-0.00559737 min:-0.111149 max:0.115734 sd:0.0402863 304: "embedded_sentence.372" NUMERICAL mean:-0.00348879 min:-0.108034 max:0.107825 sd:0.0403769 305: "embedded_sentence.373" NUMERICAL mean:0.0188844 min:-0.127183 max:0.109232 sd:0.0404355 306: "embedded_sentence.374" NUMERICAL mean:-0.00368462 min:-0.122589 max:0.124831 sd:0.0403308 307: "embedded_sentence.375" NUMERICAL mean:-0.0106164 min:-0.118052 max:0.150001 sd:0.0432093 308: "embedded_sentence.376" NUMERICAL mean:0.00311828 min:-0.106068 max:0.11577 sd:0.0400224 309: "embedded_sentence.377" NUMERICAL mean:-0.0179061 min:-0.125819 max:0.111004 sd:0.0413477 310: "embedded_sentence.378" NUMERICAL mean:-0.0129489 min:-0.126863 max:0.110993 sd:0.0434155 311: "embedded_sentence.379" NUMERICAL mean:-0.00801256 min:-0.130591 max:0.112902 sd:0.04366 312: "embedded_sentence.38" NUMERICAL mean:-0.00506909 min:-0.108533 max:0.113459 sd:0.0408111 313: "embedded_sentence.380" NUMERICAL mean:-0.00901065 min:-0.109901 max:0.123667 sd:0.0397827 314: "embedded_sentence.381" NUMERICAL mean:0.00213499 min:-0.117992 max:0.104067 sd:0.0396603 315: "embedded_sentence.382" NUMERICAL mean:0.0139051 min:-0.116796 max:0.115264 sd:0.041444 316: "embedded_sentence.383" NUMERICAL mean:0.0015667 min:-0.137801 max:0.121558 sd:0.0446806 317: "embedded_sentence.384" NUMERICAL mean:0.00590388 min:-0.136462 max:0.15641 sd:0.0551146 318: "embedded_sentence.385" NUMERICAL mean:-0.0225046 min:-0.125096 max:0.122088 sd:0.0425471 319: "embedded_sentence.386" NUMERICAL mean:-0.0291993 min:-0.149865 max:0.12312 sd:0.0469557 320: "embedded_sentence.387" NUMERICAL mean:0.0136623 min:-0.113261 max:0.107316 sd:0.0408869 321: "embedded_sentence.388" NUMERICAL mean:0.0119563 min:-0.0992984 max:0.118811 sd:0.0415827 322: "embedded_sentence.389" NUMERICAL mean:1.88279e-05 min:-0.103729 max:0.117051 sd:0.0396793 323: "embedded_sentence.39" NUMERICAL mean:-0.000564469 min:-0.110207 max:0.123467 sd:0.0405413 324: "embedded_sentence.390" NUMERICAL mean:0.00614745 min:-0.142472 max:0.132447 sd:0.0483092 325: "embedded_sentence.391" NUMERICAL mean:-0.00252831 min:-0.111571 max:0.110414 sd:0.0407484 326: "embedded_sentence.392" NUMERICAL mean:0.00560033 min:-0.106415 max:0.109868 sd:0.0411823 327: "embedded_sentence.393" NUMERICAL mean:0.000437511 min:-0.115213 max:0.121544 sd:0.0406626 328: "embedded_sentence.394" NUMERICAL mean:-0.00507897 min:-0.112722 max:0.112578 sd:0.0407212 329: "embedded_sentence.395" NUMERICAL mean:-0.0104218 min:-0.106171 max:0.13395 sd:0.0412331 330: "embedded_sentence.396" NUMERICAL mean:-0.025218 min:-0.121914 max:0.13782 sd:0.0420871 331: "embedded_sentence.397" NUMERICAL mean:-0.00425221 min:-0.117618 max:0.106735 sd:0.0438757 332: "embedded_sentence.398" NUMERICAL mean:-0.0112567 min:-0.136641 max:0.12107 sd:0.0385446 333: "embedded_sentence.399" NUMERICAL mean:-0.00238481 min:-0.14689 max:0.132483 sd:0.0512686 334: "embedded_sentence.4" NUMERICAL mean:0.0126995 min:-0.128462 max:0.120181 sd:0.0460968 335: "embedded_sentence.40" NUMERICAL mean:0.00390461 min:-0.107059 max:0.128317 sd:0.036992 336: "embedded_sentence.400" NUMERICAL mean:-0.00854602 min:-0.110339 max:0.123831 sd:0.0428819 337: "embedded_sentence.401" NUMERICAL mean:-0.0120933 min:-0.110716 max:0.107581 sd:0.0391564 338: "embedded_sentence.402" NUMERICAL mean:-0.00798588 min:-0.114245 max:0.109355 sd:0.0417294 339: "embedded_sentence.403" NUMERICAL mean:-0.00715776 min:-0.110958 max:0.109412 sd:0.0426725 340: "embedded_sentence.404" NUMERICAL mean:0.0421547 min:-0.0936097 max:0.14341 sd:0.0449053 341: "embedded_sentence.405" NUMERICAL mean:0.0138744 min:-0.101141 max:0.110993 sd:0.0409959 342: "embedded_sentence.406" NUMERICAL mean:0.0221997 min:-0.10012 max:0.12351 sd:0.0512918 343: "embedded_sentence.407" NUMERICAL mean:0.00840243 min:-0.100731 max:0.108785 sd:0.0385815 344: "embedded_sentence.408" NUMERICAL mean:-0.00995255 min:-0.119931 max:0.107382 sd:0.0397331 345: "embedded_sentence.409" NUMERICAL mean:0.00122281 min:-0.123687 max:0.110221 sd:0.0419264 346: "embedded_sentence.41" NUMERICAL mean:-0.00821721 min:-0.124872 max:0.101206 sd:0.0389586 347: "embedded_sentence.410" NUMERICAL mean:0.00722765 min:-0.120324 max:0.118298 sd:0.0397953 348: "embedded_sentence.411" NUMERICAL mean:0.00372596 min:-0.110838 max:0.104775 sd:0.0397102 349: "embedded_sentence.412" NUMERICAL mean:0.00750692 min:-0.105861 max:0.113608 sd:0.0404272 350: "embedded_sentence.413" NUMERICAL mean:0.00702045 min:-0.100497 max:0.109256 sd:0.040414 351: "embedded_sentence.414" NUMERICAL mean:0.0129925 min:-0.104637 max:0.129069 sd:0.0476144 352: "embedded_sentence.415" NUMERICAL mean:0.00895771 min:-0.103221 max:0.131867 sd:0.0416565 353: "embedded_sentence.416" NUMERICAL mean:-0.0113754 min:-0.108457 max:0.108912 sd:0.039076 354: "embedded_sentence.417" NUMERICAL mean:-0.00972072 min:-0.108896 max:0.120041 sd:0.039969 355: "embedded_sentence.418" NUMERICAL mean:0.0103305 min:-0.115689 max:0.117791 sd:0.0438928 356: "embedded_sentence.419" NUMERICAL mean:-0.011858 min:-0.110159 max:0.112286 sd:0.0405172 357: "embedded_sentence.42" NUMERICAL mean:-0.0263568 min:-0.128555 max:0.12256 sd:0.0438572 358: "embedded_sentence.420" NUMERICAL mean:0.0113019 min:-0.117355 max:0.110719 sd:0.0390142 359: "embedded_sentence.421" NUMERICAL mean:-0.00325833 min:-0.11971 max:0.0998387 sd:0.0386342 360: "embedded_sentence.422" NUMERICAL mean:-0.0175019 min:-0.121014 max:0.108533 sd:0.0430717 361: "embedded_sentence.423" NUMERICAL mean:0.00661466 min:-0.121052 max:0.104438 sd:0.0401472 362: "embedded_sentence.424" NUMERICAL mean:0.0157025 min:-0.119043 max:0.121705 sd:0.0455012 363: "embedded_sentence.425" NUMERICAL mean:0.00671776 min:-0.119955 max:0.135544 sd:0.046337 364: "embedded_sentence.426" NUMERICAL mean:0.00625655 min:-0.110938 max:0.120801 sd:0.0434661 365: "embedded_sentence.427" NUMERICAL mean:0.0204839 min:-0.112639 max:0.12859 sd:0.0461795 366: "embedded_sentence.428" NUMERICAL mean:-0.00954845 min:-0.131481 max:0.103867 sd:0.0409481 367: "embedded_sentence.429" NUMERICAL mean:0.0227497 min:-0.114759 max:0.128784 sd:0.0461912 368: "embedded_sentence.43" NUMERICAL mean:-0.00742056 min:-0.132266 max:0.135953 sd:0.0492916 369: "embedded_sentence.430" NUMERICAL mean:-0.0143054 min:-0.116372 max:0.0982788 sd:0.0397653 370: "embedded_sentence.431" NUMERICAL mean:0.00108119 min:-0.10975 max:0.113431 sd:0.0395805 371: "embedded_sentence.432" NUMERICAL mean:-0.0124634 min:-0.128303 max:0.122121 sd:0.043612 372: "embedded_sentence.433" NUMERICAL mean:-0.000974066 min:-0.127452 max:0.143976 sd:0.0512878 373: "embedded_sentence.434" NUMERICAL mean:-0.000695708 min:-0.117519 max:0.132419 sd:0.048299 374: "embedded_sentence.435" NUMERICAL mean:-0.00800422 min:-0.11716 max:0.106095 sd:0.0385783 375: "embedded_sentence.436" NUMERICAL mean:-0.00449899 min:-0.119801 max:0.13136 sd:0.0450766 376: "embedded_sentence.437" NUMERICAL mean:0.00152719 min:-0.101368 max:0.111586 sd:0.0373092 377: "embedded_sentence.438" NUMERICAL mean:-0.00746199 min:-0.110446 max:0.107505 sd:0.0409118 378: "embedded_sentence.439" NUMERICAL mean:-0.000542517 min:-0.126726 max:0.150725 sd:0.0498822 379: "embedded_sentence.44" NUMERICAL mean:-0.0136633 min:-0.125995 max:0.100658 sd:0.0357859 380: "embedded_sentence.440" NUMERICAL mean:0.0162618 min:-0.110413 max:0.112766 sd:0.039636 381: "embedded_sentence.441" NUMERICAL mean:-0.0252852 min:-0.140847 max:0.123998 sd:0.045552 382: "embedded_sentence.442" NUMERICAL mean:-0.00971423 min:-0.14093 max:0.115633 sd:0.0430468 383: "embedded_sentence.443" NUMERICAL mean:-0.00171618 min:-0.130186 max:0.122902 sd:0.0446095 384: "embedded_sentence.444" NUMERICAL mean:0.0108986 min:-0.114492 max:0.110956 sd:0.0418642 385: "embedded_sentence.445" NUMERICAL mean:-0.00650931 min:-0.106713 max:0.126819 sd:0.0394136 386: "embedded_sentence.446" NUMERICAL mean:7.68805e-05 min:-0.107121 max:0.104196 sd:0.0371536 387: "embedded_sentence.447" NUMERICAL mean:-0.00166973 min:-0.106304 max:0.113193 sd:0.0417721 388: "embedded_sentence.448" NUMERICAL mean:0.00143107 min:-0.112879 max:0.117707 sd:0.0438514 389: "embedded_sentence.449" NUMERICAL mean:0.00577755 min:-0.114301 max:0.116267 sd:0.0413021 390: "embedded_sentence.45" NUMERICAL mean:-0.00672393 min:-0.105793 max:0.106381 sd:0.0395707 391: "embedded_sentence.450" NUMERICAL mean:0.00523777 min:-0.121324 max:0.109753 sd:0.0422962 392: "embedded_sentence.451" NUMERICAL mean:0.00232381 min:-0.107421 max:0.116006 sd:0.0411045 393: "embedded_sentence.452" NUMERICAL mean:0.0131371 min:-0.119915 max:0.110052 sd:0.0388742 394: "embedded_sentence.453" NUMERICAL mean:0.00384022 min:-0.113448 max:0.103866 sd:0.0399839 395: "embedded_sentence.454" NUMERICAL mean:0.00746132 min:-0.11867 max:0.107228 sd:0.0393659 396: "embedded_sentence.455" NUMERICAL mean:0.0217711 min:-0.130108 max:0.130266 sd:0.0457751 397: "embedded_sentence.456" NUMERICAL mean:-0.00486574 min:-0.125269 max:0.103216 sd:0.0417326 398: "embedded_sentence.457" NUMERICAL mean:-0.00370284 min:-0.152411 max:0.118391 sd:0.0475716 399: "embedded_sentence.458" NUMERICAL mean:-0.0252088 min:-0.129244 max:0.110772 sd:0.0447074 400: "embedded_sentence.459" NUMERICAL mean:0.0196455 min:-0.107007 max:0.110025 sd:0.0371162 401: "embedded_sentence.46" NUMERICAL mean:-0.00846792 min:-0.137635 max:0.111598 sd:0.0406422 402: "embedded_sentence.460" NUMERICAL mean:0.00486969 min:-0.133702 max:0.117438 sd:0.0404765 403: "embedded_sentence.461" NUMERICAL mean:0.00879324 min:-0.123721 max:0.109769 sd:0.0418885 404: "embedded_sentence.462" NUMERICAL mean:0.00541842 min:-0.103881 max:0.115937 sd:0.040526 405: "embedded_sentence.463" NUMERICAL mean:0.0112013 min:-0.129965 max:0.125135 sd:0.0445652 406: "embedded_sentence.464" NUMERICAL mean:-0.00978469 min:-0.112536 max:0.136367 sd:0.0432779 407: "embedded_sentence.465" NUMERICAL mean:-0.00372292 min:-0.132975 max:0.107404 sd:0.0434915 408: "embedded_sentence.466" NUMERICAL mean:0.000832961 min:-0.106678 max:0.109534 sd:0.041454 409: "embedded_sentence.467" NUMERICAL mean:0.0128707 min:-0.123202 max:0.108301 sd:0.036966 410: "embedded_sentence.468" NUMERICAL mean:0.00143448 min:-0.109754 max:0.115596 sd:0.0410802 411: "embedded_sentence.469" NUMERICAL mean:0.00821259 min:-0.0968573 max:0.116681 sd:0.037229 412: "embedded_sentence.47" NUMERICAL mean:0.00542722 min:-0.107879 max:0.112788 sd:0.0407962 413: "embedded_sentence.470" NUMERICAL mean:-0.0126405 min:-0.11236 max:0.104975 sd:0.0410705 414: "embedded_sentence.471" NUMERICAL mean:0.00967789 min:-0.114741 max:0.113365 sd:0.0415494 415: "embedded_sentence.472" NUMERICAL mean:0.0051147 min:-0.116287 max:0.123708 sd:0.038196 416: "embedded_sentence.473" NUMERICAL mean:0.00460656 min:-0.117806 max:0.116034 sd:0.0417151 417: "embedded_sentence.474" NUMERICAL mean:-0.00244138 min:-0.103319 max:0.116585 sd:0.0374234 418: "embedded_sentence.475" NUMERICAL mean:-0.00797766 min:-0.112168 max:0.110854 sd:0.043268 419: "embedded_sentence.476" NUMERICAL mean:-0.0123356 min:-0.118527 max:0.110389 sd:0.0415487 420: "embedded_sentence.477" NUMERICAL mean:-0.00891097 min:-0.109911 max:0.114824 sd:0.0409558 421: "embedded_sentence.478" NUMERICAL mean:0.0531792 min:-0.123494 max:0.14429 sd:0.0446525 422: "embedded_sentence.479" NUMERICAL mean:0.00310177 min:-0.126525 max:0.135642 sd:0.0508086 423: "embedded_sentence.48" NUMERICAL mean:0.00416469 min:-0.106566 max:0.110393 sd:0.0387239 424: "embedded_sentence.480" NUMERICAL mean:0.00178777 min:-0.101512 max:0.111535 sd:0.0393616 425: "embedded_sentence.481" NUMERICAL mean:0.000436977 min:-0.141595 max:0.116526 sd:0.0498771 426: "embedded_sentence.482" NUMERICAL mean:0.0139387 min:-0.109079 max:0.125151 sd:0.0395955 427: "embedded_sentence.483" NUMERICAL mean:-0.0190178 min:-0.116579 max:0.12211 sd:0.0404221 428: "embedded_sentence.484" NUMERICAL mean:0.0111983 min:-0.115318 max:0.114151 sd:0.0407415 429: "embedded_sentence.485" NUMERICAL mean:-0.0210413 min:-0.12817 max:0.102505 sd:0.0409111 430: "embedded_sentence.486" NUMERICAL mean:0.00291598 min:-0.136717 max:0.132649 sd:0.0483605 431: "embedded_sentence.487" NUMERICAL mean:0.0258506 min:-0.118507 max:0.139141 sd:0.0476916 432: "embedded_sentence.488" NUMERICAL mean:0.00950834 min:-0.117085 max:0.104573 sd:0.0394689 433: "embedded_sentence.489" NUMERICAL mean:-0.00655678 min:-0.113501 max:0.116317 sd:0.0412641 434: "embedded_sentence.49" NUMERICAL mean:0.010748 min:-0.101981 max:0.119391 sd:0.0397083 435: "embedded_sentence.490" NUMERICAL mean:0.0025444 min:-0.0976397 max:0.133059 sd:0.0391231 436: "embedded_sentence.491" NUMERICAL mean:-0.00116524 min:-0.115012 max:0.108975 sd:0.0373331 437: "embedded_sentence.492" NUMERICAL mean:-0.00805514 min:-0.112223 max:0.118394 sd:0.0409569 438: "embedded_sentence.493" NUMERICAL mean:-0.00381922 min:-0.109779 max:0.113538 sd:0.0375221 439: "embedded_sentence.494" NUMERICAL mean:0.0192517 min:-0.108658 max:0.118238 sd:0.0414103 440: "embedded_sentence.495" NUMERICAL mean:-0.00252727 min:-0.118617 max:0.100404 sd:0.0398346 441: "embedded_sentence.496" NUMERICAL mean:-0.000870086 min:-0.10941 max:0.119059 sd:0.043479 442: "embedded_sentence.497" NUMERICAL mean:-0.00296294 min:-0.123757 max:0.109776 sd:0.0420959 443: "embedded_sentence.498" NUMERICAL mean:0.0127804 min:-0.138546 max:0.154906 sd:0.0511673 444: "embedded_sentence.499" NUMERICAL mean:-0.00481274 min:-0.104637 max:0.112387 sd:0.0419786 445: "embedded_sentence.5" NUMERICAL mean:0.0120099 min:-0.120963 max:0.118971 sd:0.041685 446: "embedded_sentence.50" NUMERICAL mean:0.0382225 min:-0.0980938 max:0.129267 sd:0.0373726 447: "embedded_sentence.500" NUMERICAL mean:-0.012455 min:-0.109502 max:0.102241 sd:0.0402451 448: "embedded_sentence.501" NUMERICAL mean:-0.0236005 min:-0.117228 max:0.124977 sd:0.0464432 449: "embedded_sentence.502" NUMERICAL mean:0.00916425 min:-0.128705 max:0.110148 sd:0.0412428 450: "embedded_sentence.503" NUMERICAL mean:-0.0099854 min:-0.179229 max:0.112813 sd:0.0666002 451: "embedded_sentence.504" NUMERICAL mean:0.0140659 min:-0.124558 max:0.131239 sd:0.0459631 452: "embedded_sentence.505" NUMERICAL mean:0.00529723 min:-0.119894 max:0.104362 sd:0.0399805 453: "embedded_sentence.506" NUMERICAL mean:-0.00319069 min:-0.111178 max:0.108562 sd:0.040611 454: "embedded_sentence.507" NUMERICAL mean:-0.00332249 min:-0.108088 max:0.118358 sd:0.0396039 455: "embedded_sentence.508" NUMERICAL mean:-0.00396023 min:-0.11048 max:0.107852 sd:0.0375341 456: "embedded_sentence.509" NUMERICAL mean:-0.00917504 min:-0.116661 max:0.100524 sd:0.0361387 457: "embedded_sentence.51" NUMERICAL mean:-0.0244919 min:-0.143322 max:0.151466 sd:0.0569238 458: "embedded_sentence.510" NUMERICAL mean:0.037723 min:-0.0965472 max:0.140981 sd:0.0479428 459: "embedded_sentence.511" NUMERICAL mean:0.00788656 min:-0.116457 max:0.102988 sd:0.0402552 460: "embedded_sentence.52" NUMERICAL mean:0.0137383 min:-0.119567 max:0.149818 sd:0.0480009 461: "embedded_sentence.53" NUMERICAL mean:-0.00754001 min:-0.119613 max:0.139327 sd:0.0441231 462: "embedded_sentence.54" NUMERICAL mean:-0.00119265 min:-0.117568 max:0.0984011 sd:0.0386896 463: "embedded_sentence.55" NUMERICAL mean:-0.00382799 min:-0.113112 max:0.107257 sd:0.0435431 464: "embedded_sentence.56" NUMERICAL mean:0.00818074 min:-0.145547 max:0.123275 sd:0.0429192 465: "embedded_sentence.57" NUMERICAL mean:-0.00208038 min:-0.126433 max:0.101673 sd:0.0393041 466: "embedded_sentence.58" NUMERICAL mean:0.00506083 min:-0.118728 max:0.13801 sd:0.0459501 467: "embedded_sentence.59" NUMERICAL mean:-0.00110454 min:-0.111315 max:0.10866 sd:0.0384711 468: "embedded_sentence.6" NUMERICAL mean:0.00266504 min:-0.107839 max:0.108908 sd:0.0381836 469: "embedded_sentence.60" NUMERICAL mean:-0.00560149 min:-0.126673 max:0.142958 sd:0.0476651 470: "embedded_sentence.61" NUMERICAL mean:-0.010492 min:-0.116135 max:0.117787 sd:0.0398593 471: "embedded_sentence.62" NUMERICAL mean:-0.0196407 min:-0.143423 max:0.104133 sd:0.0483823 472: "embedded_sentence.63" NUMERICAL mean:0.0072672 min:-0.134359 max:0.115527 sd:0.0442733 473: "embedded_sentence.64" NUMERICAL mean:-0.00813338 min:-0.104328 max:0.11042 sd:0.0378631 474: "embedded_sentence.65" NUMERICAL mean:0.0252276 min:-0.134246 max:0.126575 sd:0.0404105 475: "embedded_sentence.66" NUMERICAL mean:0.0121496 min:-0.121565 max:0.115153 sd:0.0399014 476: "embedded_sentence.67" NUMERICAL mean:0.000328628 min:-0.108976 max:0.10698 sd:0.0409231 477: "embedded_sentence.68" NUMERICAL mean:0.0209823 min:-0.111598 max:0.12123 sd:0.0391018 478: "embedded_sentence.69" NUMERICAL mean:0.00544792 min:-0.108988 max:0.126124 sd:0.0422695 479: "embedded_sentence.7" NUMERICAL mean:-0.00274169 min:-0.104539 max:0.13168 sd:0.0381854 480: "embedded_sentence.70" NUMERICAL mean:-0.000593016 min:-0.119492 max:0.113604 sd:0.0415354 481: "embedded_sentence.71" NUMERICAL mean:-0.000604193 min:-0.128741 max:0.107355 sd:0.0426992 482: "embedded_sentence.72" NUMERICAL mean:-0.00433507 min:-0.113435 max:0.102836 sd:0.0414469 483: "embedded_sentence.73" NUMERICAL mean:-0.0101648 min:-0.10628 max:0.119432 sd:0.0400882 484: "embedded_sentence.74" NUMERICAL mean:0.0132994 min:-0.123574 max:0.103854 sd:0.0381882 485: "embedded_sentence.75" NUMERICAL mean:-0.00154112 min:-0.135068 max:0.106161 sd:0.0393081 486: "embedded_sentence.76" NUMERICAL mean:-0.0107704 min:-0.106198 max:0.106547 sd:0.0380247 487: "embedded_sentence.77" NUMERICAL mean:0.0151205 min:-0.0985188 max:0.107297 sd:0.0381537 488: "embedded_sentence.78" NUMERICAL mean:0.00829679 min:-0.102936 max:0.116536 sd:0.0410818 489: "embedded_sentence.79" NUMERICAL mean:0.00578581 min:-0.156252 max:0.125833 sd:0.0489822 490: "embedded_sentence.8" NUMERICAL mean:0.0078143 min:-0.1422 max:0.125118 sd:0.0480273 491: "embedded_sentence.80" NUMERICAL mean:-0.00466792 min:-0.10975 max:0.118669 sd:0.0422673 492: "embedded_sentence.81" NUMERICAL mean:0.00499065 min:-0.0934409 max:0.115151 sd:0.0382445 493: "embedded_sentence.82" NUMERICAL mean:-0.0120384 min:-0.115119 max:0.109741 sd:0.039712 494: "embedded_sentence.83" NUMERICAL mean:-0.0116498 min:-0.107953 max:0.113206 sd:0.0408114 495: "embedded_sentence.84" NUMERICAL mean:-0.0210408 min:-0.108707 max:0.0992159 sd:0.0386516 496: "embedded_sentence.85" NUMERICAL mean:-0.00273396 min:-0.12944 max:0.12272 sd:0.0449487 497: "embedded_sentence.86" NUMERICAL mean:0.00658216 min:-0.113506 max:0.112219 sd:0.039801 498: "embedded_sentence.87" NUMERICAL mean:-0.00378743 min:-0.117676 max:0.109386 sd:0.0402421 499: "embedded_sentence.88" NUMERICAL mean:-0.0205237 min:-0.107587 max:0.103141 sd:0.040405 500: "embedded_sentence.89" NUMERICAL mean:-0.000411177 min:-0.119937 max:0.109877 sd:0.0421414 501: "embedded_sentence.9" NUMERICAL mean:0.0295029 min:-0.128134 max:0.118291 sd:0.0394542 502: "embedded_sentence.90" NUMERICAL mean:-0.00181531 min:-0.117795 max:0.106343 sd:0.0421115 503: "embedded_sentence.91" NUMERICAL mean:-0.00550051 min:-0.127822 max:0.113907 sd:0.0399804 504: "embedded_sentence.92" NUMERICAL mean:-0.00547455 min:-0.126723 max:0.119811 sd:0.0431932 505: "embedded_sentence.93" NUMERICAL mean:0.014195 min:-0.105489 max:0.118567 sd:0.0413103 506: "embedded_sentence.94" NUMERICAL mean:0.0188997 min:-0.104824 max:0.132286 sd:0.0497162 507: "embedded_sentence.95" NUMERICAL mean:0.00497901 min:-0.108731 max:0.124192 sd:0.0414468 508: "embedded_sentence.96" NUMERICAL mean:-0.0179242 min:-0.125507 max:0.10199 sd:0.0383211 509: "embedded_sentence.97" NUMERICAL mean:0.00327183 min:-0.122499 max:0.123037 sd:0.0419092 510: "embedded_sentence.98" NUMERICAL mean:0.0216785 min:-0.10081 max:0.116099 sd:0.0479454 511: "embedded_sentence.99" NUMERICAL mean:0.019005 min:-0.125922 max:0.117505 sd:0.0429193 CATEGORICAL: 1 (0.194932%) 512: "__LABEL" CATEGORICAL integerized vocab-size:3 no-ood-item Terminology: nas: Number of non-available (i.e. missing) values. ood: Out of dictionary. manually-defined: Attribute which type is manually defined by the user i.e. the type was not automatically inferred. tokenized: The attribute value is obtained through tokenization. has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string. vocab-size: Number of unique values. [INFO kernel.cc:762] Configure learner [INFO kernel.cc:787] Training config: learner: "RANDOM_FOREST" features: "embedded_sentence\\.0" features: "embedded_sentence\\.1" features: "embedded_sentence\\.10" features: "embedded_sentence\\.100" features: "embedded_sentence\\.101" features: "embedded_sentence\\.102" features: "embedded_sentence\\.103" features: "embedded_sentence\\.104" features: "embedded_sentence\\.105" features: "embedded_sentence\\.106" features: "embedded_sentence\\.107" features: "embedded_sentence\\.108" features: "embedded_sentence\\.109" features: "embedded_sentence\\.11" features: "embedded_sentence\\.110" features: "embedded_sentence\\.111" features: "embedded_sentence\\.112" features: "embedded_sentence\\.113" features: "embedded_sentence\\.114" features: "embedded_sentence\\.115" features: "embedded_sentence\\.116" features: "embedded_sentence\\.117" features: "embedded_sentence\\.118" features: "embedded_sentence\\.119" features: "embedded_sentence\\.12" features: "embedded_sentence\\.120" features: "embedded_sentence\\.121" features: "embedded_sentence\\.122" features: "embedded_sentence\\.123" features: "embedded_sentence\\.124" features: "embedded_sentence\\.125" features: "embedded_sentence\\.126" features: "embedded_sentence\\.127" features: "embedded_sentence\\.128" features: "embedded_sentence\\.129" features: "embedded_sentence\\.13" features: "embedded_sentence\\.130" features: "embedded_sentence\\.131" features: "embedded_sentence\\.132" features: "embedded_sentence\\.133" features: "embedded_sentence\\.134" features: "embedded_sentence\\.135" features: "embedded_sentence\\.136" features: "embedded_sentence\\.137" features: "embedded_sentence\\.138" features: "embedded_sentence\\.139" features: "embedded_sentence\\.14" features: "embedded_sentence\\.140" features: "embedded_sentence\\.141" features: "embedded_sentence\\.142" features: "embedded_sentence\\.143" features: "embedded_sentence\\.144" features: "embedded_sentence\\.145" features: "embedded_sentence\\.146" features: "embedded_sentence\\.147" features: "embedded_sentence\\.148" features: "embedded_sentence\\.149" features: "embedded_sentence\\.15" features: "embedded_sentence\\.150" features: "embedded_sentence\\.151" features: "embedded_sentence\\.152" features: "embedded_sentence\\.153" features: "embedded_sentence\\.154" features: "embedded_sentence\\.155" features: "embedded_sentence\\.156" features: "embedded_sentence\\.157" features: "embedded_sentence\\.158" features: "embedded_sentence\\.159" features: "embedded_sentence\\.16" features: "embedded_sentence\\.160" features: "embedded_sentence\\.161" features: "embedded_sentence\\.162" features: "embedded_sentence\\.163" features: "embedded_sentence\\.164" features: "embedded_sentence\\.165" features: "embedded_sentence\\.166" features: "embedded_sentence\\.167" features: "embedded_sentence\\.168" features: "embedded_sentence\\.169" features: "embedded_sentence\\.17" features: "embedded_sentence\\.170" features: "embedded_sentence\\.171" features: "embedded_sentence\\.172" features: "embedded_sentence\\.173" features: "embedded_sentence\\.174" features: "embedded_sentence\\.175" features: "embedded_sentence\\.176" features: "embedded_sentence\\.177" features: "embedded_sentence\\.178" features: "embedded_sentence\\.179" features: "embedded_sentence\\.18" features: "embedded_sentence\\.180" features: "embedded_sentence\\.181" features: "embedded_sentence\\.182" features: "embedded_sentence\\.183" features: "embedded_sentence\\.184" features: "embedded_sentence\\.185" features: "embedded_sentence\\.186" features: "embedded_sentence\\.187" features: "embedded_sentence\\.188" features: "embedded_sentence\\.189" features: "embedded_sentence\\.19" features: "embedded_sentence\\.190" features: "embedded_sentence\\.191" features: "embedded_sentence\\.192" features: "embedded_sentence\\.193" features: "embedded_sentence\\.194" features: "embedded_sentence\\.195" features: "embedded_sentence\\.196" features: "embedded_sentence\\.197" features: "embedded_sentence\\.198" features: "embedded_sentence\\.199" features: "embedded_sentence\\.2" features: "embedded_sentence\\.20" features: "embedded_sentence\\.200" features: "embedded_sentence\\.201" features: "embedded_sentence\\.202" features: "embedded_sentence\\.203" features: "embedded_sentence\\.204" features: "embedded_sentence\\.205" features: "embedded_sentence\\.206" features: "embedded_sentence\\.207" features: "embedded_sentence\\.208" features: "embedded_sentence\\.209" features: "embedded_sentence\\.21" features: "embedded_sentence\\.210" features: "embedded_sentence\\.211" features: "embedded_sentence\\.212" features: "embedded_sentence\\.213" features: "embedded_sentence\\.214" features: "embedded_sentence\\.215" features: "embedded_sentence\\.216" features: "embedded_sentence\\.217" features: "embedded_sentence\\.218" features: "embedded_sentence\\.219" features: "embedded_sentence\\.22" features: "embedded_sentence\\.220" features: "embedded_sentence\\.221" features: "embedded_sentence\\.222" features: "embedded_sentence\\.223" features: "embedded_sentence\\.224" features: "embedded_sentence\\.225" features: "embedded_sentence\\.226" features: "embedded_sentence\\.227" features: "embedded_sentence\\.228" features: "embedded_sentence\\.229" features: "embedded_sentence\\.23" features: "embedded_sentence\\.230" features: "embedded_sentence\\.231" features: "embedded_sentence\\.232" features: "embedded_sentence\\.233" features: "embedded_sentence\\.234" features: "embedded_sentence\\.235" features: "embedded_sentence\\.236" features: "embedded_sentence\\.237" features: "embedded_sentence\\.238" features: "embedded_sentence\\.239" features: "embedded_sentence\\.24" features: "embedded_sentence\\.240" features: "embedded_sentence\\.241" features: "embedded_sentence\\.242" features: "embedded_sentence\\.243" features: "embedded_sentence\\.244" features: "embedded_sentence\\.245" features: "embedded_sentence\\.246" features: "embedded_sentence\\.247" features: "embedded_sentence\\.248" features: "embedded_sentence\\.249" features: "embedded_sentence\\.25" features: "embedded_sentence\\.250" features: "embedded_sentence\\.251" features: "embedded_sentence\\.252" features: "embedded_sentence\\.253" features: "embedded_sentence\\.254" features: "embedded_sentence\\.255" features: "embedded_sentence\\.256" features: "embedded_sentence\\.257" features: "embedded_sentence\\.258" features: "embedded_sentence\\.259" features: "embedded_sentence\\.26" features: "embedded_sentence\\.260" features: "embedded_sentence\\.261" features: "embedded_sentence\\.262" features: "embedded_sentence\\.263" features: "embedded_sentence\\.264" features: "embedded_sentence\\.265" features: "embedded_sentence\\.266" features: "embedded_sentence\\.267" features: "embedded_sentence\\.268" features: "embedded_sentence\\.269" features: "embedded_sentence\\.27" features: "embedded_sentence\\.270" features: "embedded_sentence\\.271" features: "embedded_sentence\\.272" features: "embedded_sentence\\.273" features: "embedded_sentence\\.274" features: "embedded_sentence\\.275" features: "embedded_sentence\\.276" features: "embedded_sentence\\.277" features: "embedded_sentence\\.278" features: "embedded_sentence\\.279" features: "embedded_sentence\\.28" features: "embedded_sentence\\.280" features: "embedded_sentence\\.281" features: "embedded_sentence\\.282" features: "embedded_sentence\\.283" features: "embedded_sentence\\.284" features: "embedded_sentence\\.285" features: "embedded_sentence\\.286" features: "embedded_sentence\\.287" features: "embedded_sentence\\.288" features: "embedded_sentence\\.289" features: "embedded_sentence\\.29" features: "embedded_sentence\\.290" features: "embedded_sentence\\.291" features: "embedded_sentence\\.292" features: "embedded_sentence\\.293" features: "embedded_sentence\\.294" features: "embedded_sentence\\.295" features: "embedded_sentence\\.296" features: "embedded_sentence\\.297" features: "embedded_sentence\\.298" features: "embedded_sentence\\.299" features: "embedded_sentence\\.3" features: "embedded_sentence\\.30" features: "embedded_sentence\\.300" features: "embedded_sentence\\.301" features: "embedded_sentence\\.302" features: "embedded_sentence\\.303" features: "embedded_sentence\\.304" features: "embedded_sentence\\.305" features: "embedded_sentence\\.306" features: "embedded_sentence\\.307" features: "embedded_sentence\\.308" features: "embedded_sentence\\.309" features: "embedded_sentence\\.31" features: "embedded_sentence\\.310" features: "embedded_sentence\\.311" features: "embedded_sentence\\.312" features: "embedded_sentence\\.313" features: "embedded_sentence\\.314" features: "embedded_sentence\\.315" features: "embedded_sentence\\.316" features: "embedded_sentence\\.317" features: "embedded_sentence\\.318" features: "embedded_sentence\\.319" features: "embedded_sentence\\.32" features: "embedded_sentence\\.320" features: "embedded_sentence\\.321" features: "embedded_sentence\\.322" features: "embedded_sentence\\.323" features: "embedded_sentence\\.324" features: "embedded_sentence\\.325" features: "embedded_sentence\\.326" features: "embedded_sentence\\.327" features: "embedded_sentence\\.328" features: "embedded_sentence\\.329" features: "embedded_sentence\\.33" features: "embedded_sentence\\.330" features: "embedded_sentence\\.331" features: "embedded_sentence\\.332" features: "embedded_sentence\\.333" features: "embedded_sentence\\.334" features: "embedded_sentence\\.335" features: "embedded_sentence\\.336" features: "embedded_sentence\\.337" features: "embedded_sentence\\.338" features: "embedded_sentence\\.339" features: "embedded_sentence\\.34" features: "embedded_sentence\\.340" features: "embedded_sentence\\.341" features: "embedded_sentence\\.342" features: "embedded_sentence\\.343" features: "embedded_sentence\\.344" features: "embedded_sentence\\.345" features: "embedded_sentence\\.346" features: "embedded_sentence\\.347" features: "embedded_sentence\\.348" features: "embedded_sentence\\.349" features: "embedded_sentence\\.35" features: "embedded_sentence\\.350" features: "embedded_sentence\\.351" features: "embedded_sentence\\.352" features: "embedded_sentence\\.353" features: "embedded_sentence\\.354" features: "embedded_sentence\\.355" features: "embedded_sentence\\.356" features: "embedded_sentence\\.357" features: "embedded_sentence\\.358" features: "embedded_sentence\\.359" features: "embedded_sentence\\.36" features: "embedded_sentence\\.360" features: "embedded_sentence\\.361" features: "embedded_sentence\\.362" features: "embedded_sentence\\.363" features: "embedded_sentence\\.364" features: "embedded_sentence\\.365" features: "embedded_sentence\\.366" features: "embedded_sentence\\.367" features: "embedded_sentence\\.368" features: "embedded_sentence\\.369" features: "embedded_sentence\\.37" features: "embedded_sentence\\.370" features: "embedded_sentence\\.371" features: "embedded_sentence\\.372" features: "embedded_sentence\\.373" features: "embedded_sentence\\.374" features: "embedded_sentence\\.375" features: "embedded_sentence\\.376" features: "embedded_sentence\\.377" features: "embedded_sentence\\.378" features: "embedded_sentence\\.379" features: "embedded_sentence\\.38" features: "embedded_sentence\\.380" features: "embedded_sentence\\.381" features: "embedded_sentence\\.382" features: "embedded_sentence\\.383" features: "embedded_sentence\\.384" features: "embedded_sentence\\.385" features: "embedded_sentence\\.386" features: "embedded_sentence\\.387" features: "embedded_sentence\\.388" features: "embedded_sentence\\.389" features: "embedded_sentence\\.39" features: "embedded_sentence\\.390" features: "embedded_sentence\\.391" features: "embedded_sentence\\.392" features: "embedded_sentence\\.393" features: "embedded_sentence\\.394" features: "embedded_sentence\\.395" features: "embedded_sentence\\.396" features: "embedded_sentence\\.397" features: "embedded_sentence\\.398" features: "embedded_sentence\\.399" features: "embedded_sentence\\.4" features: "embedded_sentence\\.40" features: "embedded_sentence\\.400" features: "embedded_sentence\\.401" features: "embedded_sentence\\.402" features: "embedded_sentence\\.403" features: "embedded_sentence\\.404" features: "embedded_sentence\\.405" features: "embedded_sentence\\.406" features: "embedded_sentence\\.407" features: "embedded_sentence\\.408" features: "embedded_sentence\\.409" features: "embedded_sentence\\.41" features: "embedded_sentence\\.410" features: "embedded_sentence\\.411" features: "embedded_sentence\\.412" features: "embedded_sentence\\.413" features: "embedded_sentence\\.414" features: "embedded_sentence\\.415" features: "embedded_sentence\\.416" features: "embedded_sentence\\.417" features: "embedded_sentence\\.418" features: "embedded_sentence\\.419" features: "embedded_sentence\\.42" features: "embedded_sentence\\.420" features: "embedded_sentence\\.421" features: "embedded_sentence\\.422" features: "embedded_sentence\\.423" features: "embedded_sentence\\.424" features: "embedded_sentence\\.425" features: "embedded_sentence\\.426" features: "embedded_sentence\\.427" features: "embedded_sentence\\.428" features: "embedded_sentence\\.429" features: "embedded_sentence\\.43" features: "embedded_sentence\\.430" features: "embedded_sentence\\.431" features: "embedded_sentence\\.432" features: "embedded_sentence\\.433" features: "embedded_sentence\\.434" features: "embedded_sentence\\.435" features: "embedded_sentence\\.436" features: "embedded_sentence\\.437" features: "embedded_sentence\\.438" features: "embedded_sentence\\.439" features: "embedded_sentence\\.44" features: "embedded_sentence\\.440" features: "embedded_sentence\\.441" features: "embedded_sentence\\.442" features: "embedded_sentence\\.443" features: "embedded_sentence\\.444" features: "embedded_sentence\\.445" features: "embedded_sentence\\.446" features: "embedded_sentence\\.447" features: "embedded_sentence\\.448" features: "embedded_sentence\\.449" features: "embedded_sentence\\.45" features: "embedded_sentence\\.450" features: "embedded_sentence\\.451" features: "embedded_sentence\\.452" features: "embedded_sentence\\.453" features: "embedded_sentence\\.454" features: "embedded_sentence\\.455" features: "embedded_sentence\\.456" features: "embedded_sentence\\.457" features: "embedded_sentence\\.458" features: "embedded_sentence\\.459" features: "embedded_sentence\\.46" features: "embedded_sentence\\.460" features: "embedded_sentence\\.461" features: "embedded_sentence\\.462" features: "embedded_sentence\\.463" features: "embedded_sentence\\.464" features: "embedded_sentence\\.465" features: "embedded_sentence\\.466" features: "embedded_sentence\\.467" features: "embedded_sentence\\.468" features: "embedded_sentence\\.469" features: "embedded_sentence\\.47" features: "embedded_sentence\\.470" features: "embedded_sentence\\.471" features: "embedded_sentence\\.472" features: "embedded_sentence\\.473" features: "embedded_sentence\\.474" features: "embedded_sentence\\.475" features: "embedded_sentence\\.476" features: "embedded_sentence\\.477" features: "embedded_sentence\\.478" features: "embedded_sentence\\.479" features: "embedded_sentence\\.48" features: "embedded_sentence\\.480" features: "embedded_sentence\\.481" features: "embedded_sentence\\.482" features: "embedded_sentence\\.483" features: "embedded_sentence\\.484" features: "embedded_sentence\\.485" features: "embedded_sentence\\.486" features: "embedded_sentence\\.487" features: "embedded_sentence\\.488" features: "embedded_sentence\\.489" features: "embedded_sentence\\.49" features: "embedded_sentence\\.490" features: "embedded_sentence\\.491" features: "embedded_sentence\\.492" features: "embedded_sentence\\.493" features: "embedded_sentence\\.494" features: "embedded_sentence\\.495" features: "embedded_sentence\\.496" features: "embedded_sentence\\.497" features: "embedded_sentence\\.498" features: "embedded_sentence\\.499" features: "embedded_sentence\\.5" features: "embedded_sentence\\.50" features: "embedded_sentence\\.500" features: "embedded_sentence\\.501" features: "embedded_sentence\\.502" features: "embedded_sentence\\.503" features: "embedded_sentence\\.504" features: "embedded_sentence\\.505" features: "embedded_sentence\\.506" features: "embedded_sentence\\.507" features: "embedded_sentence\\.508" features: "embedded_sentence\\.509" features: "embedded_sentence\\.51" features: "embedded_sentence\\.510" features: "embedded_sentence\\.511" features: "embedded_sentence\\.52" features: "embedded_sentence\\.53" features: "embedded_sentence\\.54" features: "embedded_sentence\\.55" features: "embedded_sentence\\.56" features: "embedded_sentence\\.57" features: "embedded_sentence\\.58" features: "embedded_sentence\\.59" features: "embedded_sentence\\.6" features: "embedded_sentence\\.60" features: "embedded_sentence\\.61" features: "embedded_sentence\\.62" features: "embedded_sentence\\.63" features: "embedded_sentence\\.64" features: "embedded_sentence\\.65" features: "embedded_sentence\\.66" features: "embedded_sentence\\.67" features: "embedded_sentence\\.68" features: "embedded_sentence\\.69" features: "embedded_sentence\\.7" features: "embedded_sentence\\.70" features: "embedded_sentence\\.71" features: "embedded_sentence\\.72" features: "embedded_sentence\\.73" features: "embedded_sentence\\.74" features: "embedded_sentence\\.75" features: "embedded_sentence\\.76" features: "embedded_sentence\\.77" features: "embedded_sentence\\.78" features: "embedded_sentence\\.79" features: "embedded_sentence\\.8" features: "embedded_sentence\\.80" features: "embedded_sentence\\.81" features: "embedded_sentence\\.82" features: "embedded_sentence\\.83" features: "embedded_sentence\\.84" features: "embedded_sentence\\.85" features: "embedded_sentence\\.86" features: "embedded_sentence\\.87" features: "embedded_sentence\\.88" features: "embedded_sentence\\.89" features: "embedded_sentence\\.9" features: "embedded_sentence\\.90" features: "embedded_sentence\\.91" features: "embedded_sentence\\.92" features: "embedded_sentence\\.93" features: "embedded_sentence\\.94" features: "embedded_sentence\\.95" features: "embedded_sentence\\.96" features: "embedded_sentence\\.97" features: "embedded_sentence\\.98" features: "embedded_sentence\\.99" label: "__LABEL" task: CLASSIFICATION [yggdrasil_decision_forests.model.random_forest.proto.random_forest_config] { num_trees: 100 decision_tree { max_depth: 16 min_examples: 5 in_split_min_examples_check: true missing_value_policy: GLOBAL_IMPUTATION allow_na_conditions: false categorical_set_greedy_forward { sampling: 0.1 max_num_items: -1 min_item_frequency: 1 } growing_strategy_local { } categorical { cart { } } num_candidate_attributes_ratio: -1 axis_aligned_split { } internal { sorting_strategy: PRESORTED } } winner_take_all_inference: true compute_oob_performances: true compute_oob_variable_importances: false adapt_bootstrap_size_ratio_for_maximum_training_duration: false } [INFO kernel.cc:790] Deployment config: num_threads: 6 [INFO kernel.cc:817] Train model [INFO random_forest.cc:315] Training random forest on 67349 example(s) and 512 feature(s). [INFO random_forest.cc:628] Training of tree 1/100 (tree index:1) done accuracy:0.743339 logloss:9.25099 [INFO random_forest.cc:628] Training of tree 11/100 (tree index:10) done accuracy:0.788438 logloss:1.97592 [INFO random_forest.cc:628] Training of tree 21/100 (tree index:20) done accuracy:0.82798 logloss:0.687896 [INFO random_forest.cc:628] Training of tree 31/100 (tree index:28) done accuracy:0.8427 logloss:0.466909 [INFO random_forest.cc:628] Training of tree 41/100 (tree index:40) done accuracy:0.851327 logloss:0.403339 [INFO random_forest.cc:628] Training of tree 51/100 (tree index:53) done accuracy:0.856553 logloss:0.379845 [INFO random_forest.cc:628] Training of tree 61/100 (tree index:59) done accuracy:0.859998 logloss:0.369493 [INFO random_forest.cc:628] Training of tree 71/100 (tree index:69) done accuracy:0.862864 logloss:0.365896 [INFO random_forest.cc:628] Training of tree 81/100 (tree index:79) done accuracy:0.864556 logloss:0.363075 [INFO random_forest.cc:628] Training of tree 91/100 (tree index:91) done accuracy:0.865596 logloss:0.361243 [INFO random_forest.cc:628] Training of tree 100/100 (tree index:99) done accuracy:0.866991 logloss:0.360368 [INFO random_forest.cc:696] Final OOB metrics: accuracy:0.866991 logloss:0.360368 [INFO kernel.cc:828] Export model in log directory: /tmp/tmpw2g04fbi [INFO kernel.cc:836] Save model in resources [INFO kernel.cc:988] Loading model from path [INFO decision_forest.cc:590] Model loaded with 100 root(s), 561666 node(s), and 512 input feature(s). [INFO abstract_model.cc:993] Engine "RandomForestOptPred" built [INFO kernel.cc:848] Use fast generic engine 1053/1053 [==============================] - 75s 66ms/step
evaluation = model_2.evaluate(test_ds)
print(f"BinaryCrossentropyloss: {evaluation[0]}")
print(f"Accuracy: {evaluation[1]}")
14/14 [==============================] - 2s 16ms/step - loss: 0.0000e+00 - accuracy: 0.7821 BinaryCrossentropyloss: 0.0 Accuracy: 0.7821100950241089
Notez que les ensembles catégoriels représentent le texte différemment d'un incorporation dense, il peut donc être utile d'utiliser les deux stratégies conjointement.
Former un arbre de décision et un réseau de neurones ensemble
L'exemple précédent utilisait un réseau neuronal (NN) pré-entraîné pour traiter les caractéristiques du texte avant de les transmettre à la forêt aléatoire. Cet exemple entraînera à la fois le réseau neuronal et la forêt aléatoire à partir de zéro.
Les forêts de la décision de TF-DF ne proposent pas des gradients arrière-Propager ( bien que cela fait l'objet de recherches en cours ). Ainsi, la formation se déroule en deux étapes :
- Entraînez le réseau de neurones en tant que tâche de classification standard :
example → [Normalize] → [Neural Network*] → [classification head] → prediction
*: Training.
- Remplacez la tête du réseau neuronal (la dernière couche et le soft-max) par une forêt aléatoire. Entraînez la forêt aléatoire comme d'habitude :
example → [Normalize] → [Neural Network] → [Random Forest*] → prediction
*: Training.
Préparer le jeu de données
Cet exemple utilise les Penguins de Palmer l'ensemble de données. Voir la colab Débutant pour plus de détails.
Tout d'abord, téléchargez les données brutes :
wget -q https://storage.googleapis.com/download.tensorflow.org/data/palmer_penguins/penguins.csv -O /tmp/penguins.csv
Chargez un ensemble de données dans un cadre de données Pandas.
dataset_df = pd.read_csv("/tmp/penguins.csv")
# Display the first 3 examples.
dataset_df.head(3)
Préparez l'ensemble de données pour la formation.
label = "species"
# Replaces numerical NaN (representing missing values in Pandas Dataframe) with 0s.
# ...Neural Nets don't work well with numerical NaNs.
for col in dataset_df.columns:
if dataset_df[col].dtype not in [str, object]:
dataset_df[col] = dataset_df[col].fillna(0)
# Split the dataset into a training and testing dataset.
def split_dataset(dataset, test_ratio=0.30):
"""Splits a panda dataframe in two."""
test_indices = np.random.rand(len(dataset)) < test_ratio
return dataset[~test_indices], dataset[test_indices]
train_ds_pd, test_ds_pd = split_dataset(dataset_df)
print("{} examples in training, {} examples for testing.".format(
len(train_ds_pd), len(test_ds_pd)))
# Convert the datasets into tensorflow datasets
train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_ds_pd, label=label)
test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(test_ds_pd, label=label)
252 examples in training, 92 examples for testing. /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_decision_forests/keras/core.py:1612: FutureWarning: In a future version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only features_dataframe = dataframe.drop(label, 1)
Construire les modèles
Ensuite , créez le modèle de réseau de neurones en utilisant un style fonctionnel de Keras .
Pour garder l'exemple simple, ce modèle n'utilise que deux entrées.
input_1 = tf.keras.Input(shape=(1,), name="bill_length_mm", dtype="float")
input_2 = tf.keras.Input(shape=(1,), name="island", dtype="string")
nn_raw_inputs = [input_1, input_2]
Utilisation des couches de pré - traitement pour convertir les entrées premières aux entrées qu'appropriée pour la netrwork neural.
# Normalization.
Normalization = tf.keras.layers.Normalization
CategoryEncoding = tf.keras.layers.CategoryEncoding
StringLookup = tf.keras.layers.StringLookup
values = train_ds_pd["bill_length_mm"].values[:, tf.newaxis]
input_1_normalizer = Normalization()
input_1_normalizer.adapt(values)
values = train_ds_pd["island"].values
input_2_indexer = StringLookup(max_tokens=32)
input_2_indexer.adapt(values)
input_2_onehot = CategoryEncoding(output_mode="binary", max_tokens=32)
normalized_input_1 = input_1_normalizer(input_1)
normalized_input_2 = input_2_onehot(input_2_indexer(input_2))
nn_processed_inputs = [normalized_input_1, normalized_input_2]
WARNING:tensorflow:max_tokens is deprecated, please use num_tokens instead. WARNING:tensorflow:max_tokens is deprecated, please use num_tokens instead.
Construisez le corps du réseau de neurones :
y = tf.keras.layers.Concatenate()(nn_processed_inputs)
y = tf.keras.layers.Dense(16, activation=tf.nn.relu6)(y)
last_layer = tf.keras.layers.Dense(8, activation=tf.nn.relu, name="last")(y)
# "3" for the three label classes. If it were a binary classification, the
# output dim would be 1.
classification_output = tf.keras.layers.Dense(3)(y)
nn_model = tf.keras.models.Model(nn_raw_inputs, classification_output)
Cette nn_model
produit directement classification logits.
Créez ensuite un modèle de forêt de décision. Cela fonctionnera sur les caractéristiques de haut niveau que le réseau de neurones extrait dans la dernière couche avant cette tête de classification.
# To reduce the risk of mistakes, group both the decision forest and the
# neural network in a single keras model.
nn_without_head = tf.keras.models.Model(inputs=nn_model.inputs, outputs=last_layer)
df_and_nn_model = tfdf.keras.RandomForestModel(preprocessing=nn_without_head)
Former et évaluer les modèles
Le modèle sera formé en deux étapes. Entraînez d'abord le réseau de neurones avec sa propre tête de classification :
%set_cell_height 300
nn_model.compile(
optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=["accuracy"])
nn_model.fit(x=train_ds, validation_data=test_ds, epochs=10)
nn_model.summary()
<IPython.core.display.Javascript object> Epoch 1/10 /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/engine/functional.py:559: UserWarning: Input dict contained keys ['bill_depth_mm', 'flipper_length_mm', 'body_mass_g', 'sex', 'year'] which did not match any model input. They will be ignored by the model. inputs = self._flatten_to_reference_inputs(inputs) 4/4 [==============================] - 0s 53ms/step - loss: 1.0232 - accuracy: 0.3730 - val_loss: 1.0186 - val_accuracy: 0.3587 Epoch 2/10 4/4 [==============================] - 0s 7ms/step - loss: 1.0107 - accuracy: 0.3810 - val_loss: 1.0096 - val_accuracy: 0.3587 Epoch 3/10 4/4 [==============================] - 0s 7ms/step - loss: 1.0006 - accuracy: 0.3889 - val_loss: 1.0006 - val_accuracy: 0.3696 Epoch 4/10 4/4 [==============================] - 0s 7ms/step - loss: 0.9909 - accuracy: 0.3968 - val_loss: 0.9915 - val_accuracy: 0.3696 Epoch 5/10 4/4 [==============================] - 0s 7ms/step - loss: 0.9813 - accuracy: 0.3968 - val_loss: 0.9825 - val_accuracy: 0.3696 Epoch 6/10 4/4 [==============================] - 0s 7ms/step - loss: 0.9717 - accuracy: 0.4008 - val_loss: 0.9735 - val_accuracy: 0.3696 Epoch 7/10 4/4 [==============================] - 0s 7ms/step - loss: 0.9621 - accuracy: 0.4048 - val_loss: 0.9645 - val_accuracy: 0.4457 Epoch 8/10 4/4 [==============================] - 0s 7ms/step - loss: 0.9525 - accuracy: 0.6111 - val_loss: 0.9555 - val_accuracy: 0.6522 Epoch 9/10 4/4 [==============================] - 0s 8ms/step - loss: 0.9430 - accuracy: 0.7262 - val_loss: 0.9465 - val_accuracy: 0.6848 Epoch 10/10 4/4 [==============================] - 0s 7ms/step - loss: 0.9335 - accuracy: 0.7460 - val_loss: 0.9374 - val_accuracy: 0.7283 Model: "model_1" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== island (InputLayer) [(None, 1)] 0 [] bill_length_mm (InputLayer) [(None, 1)] 0 [] string_lookup (StringLookup) (None, 1) 0 ['island[0][0]'] normalization (Normalization) (None, 1) 3 ['bill_length_mm[0][0]'] category_encoding (CategoryEnc (None, 32) 0 ['string_lookup[0][0]'] oding) concatenate (Concatenate) (None, 33) 0 ['normalization[0][0]', 'category_encoding[0][0]'] dense (Dense) (None, 16) 544 ['concatenate[0][0]'] dense_1 (Dense) (None, 3) 51 ['dense[0][0]'] ================================================================================================== Total params: 598 Trainable params: 595 Non-trainable params: 3 __________________________________________________________________________________________________
Les couches du réseau de neurones sont partagées entre les deux modèles. Alors maintenant que le réseau de neurones est formé, le modèle de forêt de décision sera adapté à la sortie formée des couches du réseau de neurones :
%set_cell_height 300
df_and_nn_model.compile(metrics=["accuracy"])
with sys_pipes():
df_and_nn_model.fit(x=train_ds)
<IPython.core.display.Javascript object> 1/4 [======>.......................] - ETA: 0s [INFO kernel.cc:736] Start Yggdrasil model training [INFO kernel.cc:737] Collect training examples [INFO kernel.cc:392] Number of batches: 4 [INFO kernel.cc:393] Number of examples: 252 [INFO kernel.cc:759] Dataset: Number of records: 252 Number of columns: 9 Number of columns by type: NUMERICAL: 8 (88.8889%) CATEGORICAL: 1 (11.1111%) Columns: NUMERICAL: 8 (88.8889%) 0: "model_2/last/Relu:0.0" NUMERICAL mean:0.0612511 min:0 max:1.05271 sd:0.1172 1: "model_2/last/Relu:0.1" NUMERICAL mean:0.145744 min:0 max:0.357441 sd:0.140661 2: "model_2/last/Relu:0.2" NUMERICAL mean:0.114429 min:0 max:0.527097 sd:0.0945893 3: "model_2/last/Relu:0.3" NUMERICAL mean:0.0132481 min:0 max:0.124071 sd:0.0305115 4: "model_2/last/Relu:0.4" NUMERICAL mean:0.0538435 min:0 max:0.446979 sd:0.110693 5: "model_2/last/Relu:0.5" NUMERICAL mean:0.000560531 min:0 max:0.0364899 sd:0.00370266 6: "model_2/last/Relu:0.6" NUMERICAL mean:0.0278776 min:0 max:0.449398 sd:0.0592763 7: "model_2/last/Relu:0.7" NUMERICAL mean:0.0485136 min:0 max:0.319197 sd:0.104035 CATEGORICAL: 1 (11.1111%) 8: "__LABEL" CATEGORICAL integerized vocab-size:4 no-ood-item Terminology: nas: Number of non-available (i.e. missing) values. ood: Out of dictionary. manually-defined: Attribute which type is manually defined by the user i.e. the type was not automatically inferred. tokenized: The attribute value is obtained through tokenization. has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string. vocab-size: Number of unique values. [INFO kernel.cc:762] Configure learner [INFO kernel.cc:787] Training config: learner: "RANDOM_FOREST" features: "model_2/last/Relu:0\\.0" features: "model_2/last/Relu:0\\.1" features: "model_2/last/Relu:0\\.2" features: "model_2/last/Relu:0\\.3" features: "model_2/last/Relu:0\\.4" features: "model_2/last/Relu:0\\.5" features: "model_2/last/Relu:0\\.6" features: "model_2/last/Relu:0\\.7" label: "__LABEL" task: CLASSIFICATION [yggdrasil_decision_forests.model.random_forest.proto.random_forest_config] { num_trees: 300 decision_tree { max_depth: 16 min_examples: 5 in_split_min_examples_check: true missing_value_policy: GLOBAL_IMPUTATION allow_na_conditions: false categorical_set_greedy_forward { sampling: 0.1 max_num_items: -1 min_item_frequency: 1 } growing_strategy_local { } categorical { cart { } } num_candidate_attributes_ratio: -1 axis_aligned_split { } internal { sorting_strategy: PRESORTED } } winner_take_all_inference: true compute_oob_performances: true compute_oob_variable_importances: false adapt_bootstrap_size_ratio_for_maximum_training_duration: false } [INFO kernel.cc:790] Deployment config: num_threads: 6 [INFO kernel.cc:817] Train model [INFO random_forest.cc:315] Training random forest on 252 example(s) and 8 feature(s). [INFO random_forest.cc:628] Training of tree 1/300 (tree index:0) done accuracy:0.944444 logloss:2.00243 [INFO random_forest.cc:628] Training of tree 11/300 (tree index:10) done accuracy:0.948207 logloss:1.04535 [INFO random_forest.cc:628] Training of tree 21/300 (tree index:20) done accuracy:0.956349 logloss:0.763534 [INFO random_forest.cc:628] Training of tree 31/300 (tree index:30) done accuracy:0.952381 logloss:0.633103 [INFO random_forest.cc:628] Training of tree 41/300 (tree index:40) done accuracy:0.952381 logloss:0.634035 [INFO random_forest.cc:628] Training of tree 51/300 (tree index:49) done accuracy:0.952381 logloss:0.63407 [INFO random_forest.cc:628] Training of tree 61/300 (tree index:60) done accuracy:0.952381 logloss:0.632213 [INFO random_forest.cc:628] Training of tree 71/300 (tree index:69) done accuracy:0.952381 logloss:0.634892 [INFO random_forest.cc:628] Training of tree 81/300 (tree index:80) done accuracy:0.948413 logloss:0.634806 [INFO random_forest.cc:628] Training of tree 91/300 (tree index:90) done accuracy:0.948413 logloss:0.634308 [INFO random_forest.cc:628] Training of tree 101/300 (tree index:100) done accuracy:0.944444 logloss:0.63434 [INFO random_forest.cc:628] Training of tree 111/300 (tree index:110) done accuracy:0.944444 logloss:0.63474 [INFO random_forest.cc:628] Training of tree 121/300 (tree index:120) done accuracy:0.944444 logloss:0.634896 [INFO random_forest.cc:628] Training of tree 131/300 (tree index:130) done accuracy:0.948413 logloss:0.634515 [INFO random_forest.cc:628] Training of tree 141/300 (tree index:138) done accuracy:0.944444 logloss:0.635284 [INFO random_forest.cc:628] Training of tree 151/300 (tree index:150) done accuracy:0.944444 logloss:0.634902 [INFO random_forest.cc:628] Training of tree 161/300 (tree index:160) done accuracy:0.944444 logloss:0.633816 [INFO random_forest.cc:628] Training of tree 171/300 (tree index:170) done accuracy:0.944444 logloss:0.632936 [INFO random_forest.cc:628] Training of tree 181/300 (tree index:180) done accuracy:0.944444 logloss:0.632445 [INFO random_forest.cc:628] Training of tree 191/300 (tree index:189) done accuracy:0.944444 logloss:0.632614 [INFO random_forest.cc:628] Training of tree 201/300 (tree index:199) done accuracy:0.944444 logloss:0.632688 [INFO random_forest.cc:628] Training of tree 211/300 (tree index:206) done accuracy:0.944444 logloss:0.633056 [INFO random_forest.cc:628] Training of tree 221/300 (tree index:220) done accuracy:0.944444 logloss:0.633952 [INFO random_forest.cc:628] Training of tree 231/300 (tree index:231) done accuracy:0.944444 logloss:0.634217 [INFO random_forest.cc:628] Training of tree 241/300 (tree index:240) done accuracy:0.944444 logloss:0.634271 [INFO random_forest.cc:628] Training of tree 251/300 (tree index:244) done accuracy:0.944444 logloss:0.634761 [INFO random_forest.cc:628] Training of tree 261/300 (tree index:261) done accuracy:0.944444 logloss:0.634685 [INFO random_forest.cc:628] Training of tree 271/300 (tree index:268) done accuracy:0.944444 logloss:0.634395 [INFO random_forest.cc:628] Training of tree 281/300 (tree index:280) done accuracy:0.944444 logloss:0.633878 [INFO random_forest.cc:628] Training of tree 291/300 (tree index:291) done accuracy:0.944444 logloss:0.633605 [INFO random_forest.cc:628] Training of tree 300/300 (tree index:299) done accuracy:0.944444 logloss:0.633627 [INFO random_forest.cc:696] Final OOB metrics: accuracy:0.944444 logloss:0.633627 [INFO kernel.cc:828] Export model in log directory: /tmp/tmpb92rvbmj [INFO kernel.cc:836] Save model in resources [INFO kernel.cc:988] Loading model from path [INFO decision_forest.cc:590] Model loaded with 300 root(s), 4148 node(s), and 8 input feature(s). [INFO kernel.cc:848] Use fast generic engine 4/4 [==============================] - 0s 18ms/step
Évaluez maintenant le modèle composé :
print("Evaluation:", df_and_nn_model.evaluate(test_ds))
2/2 [==============================] - 0s 5ms/step - loss: 0.0000e+00 - accuracy: 0.9565 Evaluation: [0.0, 0.95652174949646]
Comparez-le au réseau de neurones seul :
print("Evaluation :", nn_model.evaluate(test_ds))
2/2 [==============================] - 0s 4ms/step - loss: 0.9374 - accuracy: 0.7283 Evaluation : [0.9373641610145569, 0.72826087474823]