Model inspector.
Utility to access the structure and meta-data (e.g. variable importance,
training logs) of a model.
Usage:
model = keras.RandomForest().
model.fit(...)
inspector = model.make_inspector()
# Or
inspector = make_inspector(<model directory>)
print(inspector.name())
print(inspector.num_trees())
# Note: "inspector"'s accessors depends on the model type (inspector.name()).
Classes
class AbstractInspector
: Abstract inspector for all Yggdrasil models.
class Evaluation
: Evaluation of a model.
class IterNodeResult
: Value returned by node iterator methods. See "iterate_on_nodes".
class SimpleColumnSpec
: Simplified representation of a column spec.
class TrainLog
: One entry in the training logs of a model.
Functions
detect_model_file_prefix(...)
: Auto-detects the model's file prefix if possible.
make_inspector(...)
: Creates an inspector for a model.
Other Members |
BASE_FILENAME_DATASPEC
|
'data_spec.pb'
|
BASE_FILENAME_DONE
|
'done'
|
BASE_FILENAME_GBT_HEADER
|
'gradient_boosted_trees_header.pb'
|
BASE_FILENAME_HEADER
|
'header.pb'
|
BASE_FILENAME_MULTITASKER_HEADER
|
'multitasker.pb'
|
BASE_FILENAME_NODES_SHARD
|
'nodes'
|
BASE_FILENAME_RANDOM_FOREST_HEADER
|
'random_forest_header.pb'
|
ColumnType
|
Instance of google.protobuf.internal.enum_type_wrapper.EnumTypeWrapper
|
MODEL_INSPECTORS
|
{
'GRADIENT_BOOSTED_TREES': <class 'tensorflow_decision_forests.component.inspector.inspector._GradientBoostedTreeInspector'>,
'MULTITASKER': <class 'tensorflow_decision_forests.component.inspector.inspector._MultitaskerInspector'>,
'RANDOM_FOREST': <class 'tensorflow_decision_forests.component.inspector.inspector._RandomForestInspector'>
}
|
Task
|
Instance of google.protobuf.internal.enum_type_wrapper.EnumTypeWrapper
|
absolute_import
|
Instance of __future__._Feature
|
division
|
Instance of __future__._Feature
|
print_function
|
Instance of __future__._Feature
|