TFDS จัดเตรียมชุดข้อมูลที่พร้อมใช้งานสำหรับใช้กับ TensorFlow, Jax และกรอบงาน Machine Learning อื่นๆ
มันจัดการการดาวน์โหลดและเตรียมข้อมูลโดยกำหนดและสร้าง tf.data.Dataset
(หรือ np.array
)
ดูบน TensorFlow.org | ทำงานใน Google Colab | ดูแหล่งที่มาบน GitHub | ดาวน์โหลดโน๊ตบุ๊ค |
การติดตั้ง
TFDS มีอยู่ในสองแพ็คเกจ:
-
pip install tensorflow-datasets
: เวอร์ชันเสถียรเปิดตัวทุกสองสามเดือน -
pip install tfds-nightly
: เปิดตัวทุกวัน มีชุดข้อมูลเวอร์ชันล่าสุด
colab นี้ใช้ tfds-nightly
:
pip install -q tfds-nightly tensorflow matplotlib
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
ค้นหาชุดข้อมูลที่มีอยู่
ตัวสร้างชุดข้อมูลทั้งหมดเป็นคลาสย่อยของ tfds.core.DatasetBuilder
หากต้องการรับรายการตัวสร้างที่พร้อมใช้งาน ให้ใช้ tfds.list_builders()
หรือดูที่ แคตตาล็อก ของเรา
tfds.list_builders()
['abstract_reasoning', 'accentdb', 'aeslc', 'aflw2k3d', 'ag_news_subset', 'ai2_arc', 'ai2_arc_with_ir', 'amazon_us_reviews', 'anli', 'arc', 'asset', 'assin2', 'bair_robot_pushing_small', 'bccd', 'beans', 'bee_dataset', 'big_patent', 'bigearthnet', 'billsum', 'binarized_mnist', 'binary_alpha_digits', 'blimp', 'booksum', 'bool_q', 'c4', 'caltech101', 'caltech_birds2010', 'caltech_birds2011', 'cardiotox', 'cars196', 'cassava', 'cats_vs_dogs', 'celeb_a', 'celeb_a_hq', 'cfq', 'cherry_blossoms', 'chexpert', 'cifar10', 'cifar100', 'cifar10_1', 'cifar10_corrupted', 'citrus_leaves', 'cityscapes', 'civil_comments', 'clevr', 'clic', 'clinc_oos', 'cmaterdb', 'cnn_dailymail', 'coco', 'coco_captions', 'coil100', 'colorectal_histology', 'colorectal_histology_large', 'common_voice', 'coqa', 'cos_e', 'cosmos_qa', 'covid19', 'covid19sum', 'crema_d', 'cs_restaurants', 'curated_breast_imaging_ddsm', 'cycle_gan', 'd4rl_adroit_door', 'd4rl_adroit_hammer', 'd4rl_adroit_pen', 'd4rl_adroit_relocate', 'd4rl_antmaze', 'd4rl_mujoco_ant', 'd4rl_mujoco_halfcheetah', 'd4rl_mujoco_hopper', 'd4rl_mujoco_walker2d', 'dart', 'davis', 'deep_weeds', 'definite_pronoun_resolution', 'dementiabank', 'diabetic_retinopathy_detection', 'diamonds', 'div2k', 'dmlab', 'doc_nli', 'dolphin_number_word', 'domainnet', 'downsampled_imagenet', 'drop', 'dsprites', 'dtd', 'duke_ultrasound', 'e2e_cleaned', 'efron_morris75', 'emnist', 'eraser_multi_rc', 'esnli', 'eurosat', 'fashion_mnist', 'flic', 'flores', 'food101', 'forest_fires', 'fuss', 'gap', 'geirhos_conflict_stimuli', 'gem', 'genomics_ood', 'german_credit_numeric', 'gigaword', 'glue', 'goemotions', 'gov_report', 'gpt3', 'gref', 'groove', 'grounded_scan', 'gsm8k', 'gtzan', 'gtzan_music_speech', 'hellaswag', 'higgs', 'horses_or_humans', 'howell', 'i_naturalist2017', 'i_naturalist2018', 'imagenet2012', 'imagenet2012_corrupted', 'imagenet2012_multilabel', 'imagenet2012_real', 'imagenet2012_subset', 'imagenet_a', 'imagenet_lt', 'imagenet_r', 'imagenet_resized', 'imagenet_sketch', 'imagenet_v2', 'imagenette', 'imagewang', 'imdb_reviews', 'irc_disentanglement', 'iris', 'istella', 'kddcup99', 'kitti', 'kmnist', 'lambada', 'lfw', 'librispeech', 'librispeech_lm', 'libritts', 'ljspeech', 'lm1b', 'locomotion', 'lost_and_found', 'lsun', 'lvis', 'malaria', 'math_dataset', 'math_qa', 'mctaco', 'mlqa', 'mnist', 'mnist_corrupted', 'movie_lens', 'movie_rationales', 'movielens', 'moving_mnist', 'mslr_web', 'multi_news', 'multi_nli', 'multi_nli_mismatch', 'natural_questions', 'natural_questions_open', 'newsroom', 'nsynth', 'nyu_depth_v2', 'ogbg_molpcba', 'omniglot', 'open_images_challenge2019_detection', 'open_images_v4', 'openbookqa', 'opinion_abstracts', 'opinosis', 'opus', 'oxford_flowers102', 'oxford_iiit_pet', 'para_crawl', 'pass', 'patch_camelyon', 'paws_wiki', 'paws_x_wiki', 'penguins', 'pet_finder', 'pg19', 'piqa', 'places365_small', 'plant_leaves', 'plant_village', 'plantae_k', 'protein_net', 'qa4mre', 'qasc', 'quac', 'quality', 'quickdraw_bitmap', 'race', 'radon', 'reddit', 'reddit_disentanglement', 'reddit_tifu', 'ref_coco', 'resisc45', 'rlu_atari', 'rlu_atari_checkpoints', 'rlu_atari_checkpoints_ordered', 'rlu_dmlab_explore_object_rewards_few', 'rlu_dmlab_explore_object_rewards_many', 'rlu_dmlab_rooms_select_nonmatching_object', 'rlu_dmlab_rooms_watermaze', 'rlu_dmlab_seekavoid_arena01', 'rlu_rwrl', 'robomimic_ph', 'robonet', 'robosuite_panda_pick_place_can', 'rock_paper_scissors', 'rock_you', 's3o4d', 'salient_span_wikipedia', 'samsum', 'savee', 'scan', 'scene_parse150', 'schema_guided_dialogue', 'scicite', 'scientific_papers', 'scrolls', 'sentiment140', 'shapes3d', 'siscore', 'smallnorb', 'smartwatch_gestures', 'snli', 'so2sat', 'speech_commands', 'spoken_digit', 'squad', 'squad_question_generation', 'stanford_dogs', 'stanford_online_products', 'star_cfq', 'starcraft_video', 'stl10', 'story_cloze', 'summscreen', 'sun397', 'super_glue', 'svhn_cropped', 'symmetric_solids', 'tao', 'ted_hrlr_translate', 'ted_multi_translate', 'tedlium', 'tf_flowers', 'the300w_lp', 'tiny_shakespeare', 'titanic', 'trec', 'trivia_qa', 'tydi_qa', 'uc_merced', 'ucf101', 'vctk', 'visual_domain_decathlon', 'voc', 'voxceleb', 'voxforge', 'waymo_open_dataset', 'web_nlg', 'web_questions', 'wider_face', 'wiki40b', 'wiki_auto', 'wiki_bio', 'wiki_table_questions', 'wiki_table_text', 'wikiann', 'wikihow', 'wikipedia', 'wikipedia_toxicity_subtypes', 'wine_quality', 'winogrande', 'wit', 'wit_kaggle', 'wmt13_translate', 'wmt14_translate', 'wmt15_translate', 'wmt16_translate', 'wmt17_translate', 'wmt18_translate', 'wmt19_translate', 'wmt_t2t_translate', 'wmt_translate', 'wordnet', 'wsc273', 'xnli', 'xquad', 'xsum', 'xtreme_pawsx', 'xtreme_xnli', 'yelp_polarity_reviews', 'yes_no', 'youtube_vis', 'huggingface:acronym_identification', 'huggingface:ade_corpus_v2', 'huggingface:adversarial_qa', 'huggingface:aeslc', 'huggingface:afrikaans_ner_corpus', 'huggingface:ag_news', 'huggingface:ai2_arc', 'huggingface:air_dialogue', 'huggingface:ajgt_twitter_ar', 'huggingface:allegro_reviews', 'huggingface:allocine', 'huggingface:alt', 'huggingface:amazon_polarity', 'huggingface:amazon_reviews_multi', 'huggingface:amazon_us_reviews', 'huggingface:ambig_qa', 'huggingface:americas_nli', 'huggingface:ami', 'huggingface:amttl', 'huggingface:anli', 'huggingface:app_reviews', 'huggingface:aqua_rat', 'huggingface:aquamuse', 'huggingface:ar_cov19', 'huggingface:ar_res_reviews', 'huggingface:ar_sarcasm', 'huggingface:arabic_billion_words', 'huggingface:arabic_pos_dialect', 'huggingface:arabic_speech_corpus', 'huggingface:arcd', 'huggingface:arsentd_lev', 'huggingface:art', 'huggingface:arxiv_dataset', 'huggingface:ascent_kb', 'huggingface:aslg_pc12', 'huggingface:asnq', 'huggingface:asset', 'huggingface:assin', 'huggingface:assin2', 'huggingface:atomic', 'huggingface:autshumato', 'huggingface:babi_qa', 'huggingface:banking77', 'huggingface:bbaw_egyptian', 'huggingface:bbc_hindi_nli', 'huggingface:bc2gm_corpus', 'huggingface:beans', 'huggingface:best2009', 'huggingface:bianet', 'huggingface:bible_para', 'huggingface:big_patent', 'huggingface:billsum', 'huggingface:bing_coronavirus_query_set', 'huggingface:biomrc', 'huggingface:biosses', 'huggingface:blbooksgenre', 'huggingface:blended_skill_talk', 'huggingface:blimp', 'huggingface:blog_authorship_corpus', 'huggingface:bn_hate_speech', 'huggingface:bookcorpus', 'huggingface:bookcorpusopen', 'huggingface:boolq', 'huggingface:bprec', 'huggingface:break_data', 'huggingface:brwac', 'huggingface:bsd_ja_en', 'huggingface:bswac', 'huggingface:c3', 'huggingface:c4', 'huggingface:cail2018', 'huggingface:caner', 'huggingface:capes', 'huggingface:casino', 'huggingface:catalonia_independence', 'huggingface:cats_vs_dogs', 'huggingface:cawac', 'huggingface:cbt', 'huggingface:cc100', 'huggingface:cc_news', 'huggingface:ccaligned_multilingual', 'huggingface:cdsc', 'huggingface:cdt', 'huggingface:cedr', 'huggingface:cfq', 'huggingface:chr_en', 'huggingface:cifar10', 'huggingface:cifar100', 'huggingface:circa', 'huggingface:civil_comments', 'huggingface:clickbait_news_bg', 'huggingface:climate_fever', 'huggingface:clinc_oos', 'huggingface:clue', 'huggingface:cmrc2018', 'huggingface:cmu_hinglish_dog', 'huggingface:cnn_dailymail', 'huggingface:coached_conv_pref', 'huggingface:coarse_discourse', 'huggingface:codah', 'huggingface:code_search_net', 'huggingface:code_x_glue_cc_clone_detection_big_clone_bench', 'huggingface:code_x_glue_cc_clone_detection_poj104', 'huggingface:code_x_glue_cc_cloze_testing_all', 'huggingface:code_x_glue_cc_cloze_testing_maxmin', 'huggingface:code_x_glue_cc_code_completion_line', 'huggingface:code_x_glue_cc_code_completion_token', 'huggingface:code_x_glue_cc_code_refinement', 'huggingface:code_x_glue_cc_code_to_code_trans', 'huggingface:code_x_glue_cc_defect_detection', 'huggingface:code_x_glue_ct_code_to_text', 'huggingface:code_x_glue_tc_nl_code_search_adv', 'huggingface:code_x_glue_tc_text_to_code', 'huggingface:code_x_glue_tt_text_to_text', 'huggingface:com_qa', 'huggingface:common_gen', 'huggingface:common_language', 'huggingface:common_voice', 'huggingface:commonsense_qa', 'huggingface:competition_math', 'huggingface:compguesswhat', 'huggingface:conceptnet5', 'huggingface:conll2000', 'huggingface:conll2002', 'huggingface:conll2003', 'huggingface:conllpp', 'huggingface:conv_ai', 'huggingface:conv_ai_2', 'huggingface:conv_ai_3', 'huggingface:conv_questions', 'huggingface:coqa', 'huggingface:cord19', 'huggingface:cornell_movie_dialog', 'huggingface:cos_e', 'huggingface:cosmos_qa', 'huggingface:counter', 'huggingface:covid_qa_castorini', 'huggingface:covid_qa_deepset', 'huggingface:covid_qa_ucsd', 'huggingface:covid_tweets_japanese', 'huggingface:covost2', 'huggingface:craigslist_bargains', 'huggingface:crawl_domain', 'huggingface:crd3', 'huggingface:crime_and_punish', 'huggingface:crows_pairs', 'huggingface:cryptonite', 'huggingface:cs_restaurants', 'huggingface:cuad', 'huggingface:curiosity_dialogs', 'huggingface:daily_dialog', 'huggingface:dane', 'huggingface:danish_political_comments', 'huggingface:dart', 'huggingface:datacommons_factcheck', 'huggingface:dbpedia_14', 'huggingface:dbrd', 'huggingface:deal_or_no_dialog', 'huggingface:definite_pronoun_resolution', 'huggingface:dengue_filipino', 'huggingface:dialog_re', 'huggingface:diplomacy_detection', 'huggingface:disaster_response_messages', 'huggingface:discofuse', 'huggingface:discovery', 'huggingface:disfl_qa', 'huggingface:doc2dial', 'huggingface:docred', 'huggingface:doqa', 'huggingface:dream', 'huggingface:drop', 'huggingface:duorc', 'huggingface:dutch_social', 'huggingface:dyk', 'huggingface:e2e_nlg', 'huggingface:e2e_nlg_cleaned', 'huggingface:ecb', 'huggingface:ecthr_cases', 'huggingface:eduge', 'huggingface:ehealth_kd', 'huggingface:eitb_parcc', 'huggingface:eli5', 'huggingface:eli5_category', 'huggingface:emea', 'huggingface:emo', 'huggingface:emotion', 'huggingface:emotone_ar', 'huggingface:empathetic_dialogues', 'huggingface:enriched_web_nlg', 'huggingface:eraser_multi_rc', 'huggingface:esnli', 'huggingface:eth_py150_open', 'huggingface:ethos', 'huggingface:eu_regulatory_ir', 'huggingface:eurlex', 'huggingface:euronews', 'huggingface:europa_eac_tm', 'huggingface:europa_ecdc_tm', 'huggingface:europarl_bilingual', 'huggingface:event2Mind', 'huggingface:evidence_infer_treatment', 'huggingface:exams', 'huggingface:factckbr', 'huggingface:fake_news_english', 'huggingface:fake_news_filipino', 'huggingface:farsi_news', 'huggingface:fashion_mnist', 'huggingface:fever', 'huggingface:few_rel', 'huggingface:financial_phrasebank', 'huggingface:finer', 'huggingface:flores', 'huggingface:flue', 'huggingface:food101', 'huggingface:fquad', 'huggingface:freebase_qa', 'huggingface:gap', 'huggingface:gem', 'huggingface:generated_reviews_enth', 'huggingface:generics_kb', 'huggingface:german_legal_entity_recognition', 'huggingface:germaner', 'huggingface:germeval_14', 'huggingface:giga_fren', 'huggingface:gigaword', 'huggingface:glucose', 'huggingface:glue', 'huggingface:gnad10', 'huggingface:go_emotions', 'huggingface:gooaq', 'huggingface:google_wellformed_query', 'huggingface:grail_qa', 'huggingface:great_code', 'huggingface:greek_legal_code', 'huggingface:guardian_authorship', 'huggingface:gutenberg_time', 'huggingface:hans', 'huggingface:hansards', 'huggingface:hard', 'huggingface:harem', 'huggingface:has_part', 'huggingface:hate_offensive', 'huggingface:hate_speech18', 'huggingface:hate_speech_filipino', 'huggingface:hate_speech_offensive', 'huggingface:hate_speech_pl', 'huggingface:hate_speech_portuguese', 'huggingface:hatexplain', 'huggingface:hausa_voa_ner', 'huggingface:hausa_voa_topics', 'huggingface:hda_nli_hindi', 'huggingface:head_qa', 'huggingface:health_fact', 'huggingface:hebrew_projectbenyehuda', 'huggingface:hebrew_sentiment', 'huggingface:hebrew_this_world', 'huggingface:hellaswag', 'huggingface:hendrycks_test', 'huggingface:hind_encorp', 'huggingface:hindi_discourse', 'huggingface:hippocorpus', 'huggingface:hkcancor', 'huggingface:hlgd', 'huggingface:hope_edi', 'huggingface:hotpot_qa', 'huggingface:hover', 'huggingface:hrenwac_para', 'huggingface:hrwac', 'huggingface:humicroedit', 'huggingface:hybrid_qa', 'huggingface:hyperpartisan_news_detection', 'huggingface:iapp_wiki_qa_squad', 'huggingface:id_clickbait', 'huggingface:id_liputan6', 'huggingface:id_nergrit_corpus', 'huggingface:id_newspapers_2018', 'huggingface:id_panl_bppt', 'huggingface:id_puisi', 'huggingface:igbo_english_machine_translation', 'huggingface:igbo_monolingual', 'huggingface:igbo_ner', 'huggingface:ilist', 'huggingface:imdb', 'huggingface:imdb_urdu_reviews', 'huggingface:imppres', 'huggingface:indic_glue', 'huggingface:indonli', 'huggingface:indonlu', 'huggingface:inquisitive_qg', 'huggingface:interpress_news_category_tr', 'huggingface:interpress_news_category_tr_lite', 'huggingface:irc_disentangle', 'huggingface:isixhosa_ner_corpus', 'huggingface:isizulu_ner_corpus', 'huggingface:iwslt2017', 'huggingface:jeopardy', 'huggingface:jfleg', 'huggingface:jigsaw_toxicity_pred', 'huggingface:jigsaw_unintended_bias', 'huggingface:jnlpba', 'huggingface:journalists_questions', 'huggingface:kan_hope', 'huggingface:kannada_news', 'huggingface:kd_conv', 'huggingface:kde4', 'huggingface:kelm', 'huggingface:kilt_tasks', 'huggingface:kilt_wikipedia', 'huggingface:kinnews_kirnews', 'huggingface:klue', 'huggingface:kor_3i4k', 'huggingface:kor_hate', 'huggingface:kor_ner', 'huggingface:kor_nli', 'huggingface:kor_nlu', 'huggingface:kor_qpair', 'huggingface:kor_sae', 'huggingface:kor_sarcasm', 'huggingface:labr', 'huggingface:lama', 'huggingface:lambada', 'huggingface:large_spanish_corpus', 'huggingface:laroseda', 'huggingface:lc_quad', 'huggingface:lener_br', 'huggingface:lex_glue', 'huggingface:liar', 'huggingface:librispeech_asr', 'huggingface:librispeech_lm', 'huggingface:limit', 'huggingface:lince', 'huggingface:linnaeus', 'huggingface:liveqa', 'huggingface:lj_speech', 'huggingface:lm1b', 'huggingface:lst20', 'huggingface:m_lama', 'huggingface:mac_morpho', 'huggingface:makhzan', 'huggingface:masakhaner', 'huggingface:math_dataset', 'huggingface:math_qa', 'huggingface:matinf', 'huggingface:mbpp', 'huggingface:mc4', 'huggingface:mc_taco', 'huggingface:md_gender_bias', 'huggingface:mdd', 'huggingface:med_hop', 'huggingface:medal', 'huggingface:medical_dialog', 'huggingface:medical_questions_pairs', 'huggingface:menyo20k_mt', 'huggingface:meta_woz', 'huggingface:metooma', 'huggingface:metrec', 'huggingface:miam', 'huggingface:mkb', 'huggingface:mkqa', 'huggingface:mlqa', 'huggingface:mlsum', 'huggingface:mnist', 'huggingface:mocha', 'huggingface:moroco', 'huggingface:movie_rationales', 'huggingface:mrqa', 'huggingface:ms_marco', 'huggingface:ms_terms', 'huggingface:msr_genomics_kbcomp', 'huggingface:msr_sqa', 'huggingface:msr_text_compression', 'huggingface:msr_zhen_translation_parity', 'huggingface:msra_ner', 'huggingface:mt_eng_vietnamese', 'huggingface:muchocine', 'huggingface:multi_booked', 'huggingface:multi_eurlex', 'huggingface:multi_news', 'huggingface:multi_nli', 'huggingface:multi_nli_mismatch', 'huggingface:multi_para_crawl', 'huggingface:multi_re_qa', 'huggingface:multi_woz_v22', 'huggingface:multi_x_science_sum', 'huggingface:multidoc2dial', 'huggingface:multilingual_librispeech', 'huggingface:mutual_friends', 'huggingface:mwsc', 'huggingface:myanmar_news', 'huggingface:narrativeqa', 'huggingface:narrativeqa_manual', 'huggingface:natural_questions', 'huggingface:ncbi_disease', 'huggingface:nchlt', 'huggingface:ncslgr', 'huggingface:nell', 'huggingface:neural_code_search', 'huggingface:news_commentary', 'huggingface:newsgroup', 'huggingface:newsph', 'huggingface:newsph_nli', 'huggingface:newspop', 'huggingface:newsqa', 'huggingface:newsroom', 'huggingface:nkjp-ner', 'huggingface:nli_tr', 'huggingface:nlu_evaluation_data', 'huggingface:norec', 'huggingface:norne', 'huggingface:norwegian_ner', 'huggingface:nq_open', 'huggingface:nsmc', 'huggingface:numer_sense', 'huggingface:numeric_fused_head', 'huggingface:oclar', 'huggingface:offcombr', 'huggingface:offenseval2020_tr', 'huggingface:offenseval_dravidian', 'huggingface:ofis_publik', 'huggingface:ohsumed', 'huggingface:ollie', 'huggingface:omp', 'huggingface:onestop_english', 'huggingface:onestop_qa', 'huggingface:open_subtitles', 'huggingface:openai_humaneval', 'huggingface:openbookqa', 'huggingface:openslr', 'huggingface:openwebtext', 'huggingface:opinosis', 'huggingface:opus100', 'huggingface:opus_books', 'huggingface:opus_dgt', 'huggingface:opus_dogc', 'huggingface:opus_elhuyar', 'huggingface:opus_euconst', 'huggingface:opus_finlex', 'huggingface:opus_fiskmo', 'huggingface:opus_gnome', 'huggingface:opus_infopankki', 'huggingface:opus_memat', 'huggingface:opus_montenegrinsubs', 'huggingface:opus_openoffice', 'huggingface:opus_paracrawl', 'huggingface:opus_rf', 'huggingface:opus_tedtalks', 'huggingface:opus_ubuntu', 'huggingface:opus_wikipedia', 'huggingface:opus_xhosanavy', 'huggingface:orange_sum', 'huggingface:oscar', 'huggingface:para_crawl', 'huggingface:para_pat', 'huggingface:parsinlu_reading_comprehension', 'huggingface:paws', 'huggingface:paws-x', 'huggingface:pec', 'huggingface:peer_read', 'huggingface:peoples_daily_ner', 'huggingface:per_sent', 'huggingface:persian_ner', 'huggingface:pg19', 'huggingface:php', 'huggingface:piaf', 'huggingface:pib', 'huggingface:piqa', 'huggingface:pn_summary', 'huggingface:poem_sentiment', 'huggingface:polemo2', 'huggingface:poleval2019_cyberbullying', 'huggingface:poleval2019_mt', 'huggingface:polsum', 'huggingface:polyglot_ner', 'huggingface:prachathai67k', 'huggingface:pragmeval', 'huggingface:proto_qa', 'huggingface:psc', 'huggingface:ptb_text_only', 'huggingface:pubmed', 'huggingface:pubmed_qa', 'huggingface:py_ast', 'huggingface:qa4mre', 'huggingface:qa_srl', 'huggingface:qa_zre', 'huggingface:qangaroo', 'huggingface:qanta', 'huggingface:qasc', 'huggingface:qasper', 'huggingface:qed', 'huggingface:qed_amara', 'huggingface:quac', 'huggingface:quail', 'huggingface:quarel', 'huggingface:quartz', 'huggingface:quora', 'huggingface:quoref', 'huggingface:race', 'huggingface:re_dial', 'huggingface:reasoning_bg', 'huggingface:recipe_nlg', 'huggingface:reclor', 'huggingface:reddit', 'huggingface:reddit_tifu', 'huggingface:refresd', 'huggingface:reuters21578', 'huggingface:riddle_sense', 'huggingface:ro_sent', 'huggingface:ro_sts', 'huggingface:ro_sts_parallel', 'huggingface:roman_urdu', 'huggingface:ronec', 'huggingface:ropes', 'huggingface:rotten_tomatoes', 'huggingface:russian_super_glue', 'huggingface:s2orc', 'huggingface:samsum', 'huggingface:sanskrit_classic', 'huggingface:saudinewsnet', 'huggingface:sberquad', 'huggingface:scan', 'huggingface:scb_mt_enth_2020', 'huggingface:schema_guided_dstc8', 'huggingface:scicite', 'huggingface:scielo', 'huggingface:scientific_papers', 'huggingface:scifact', 'huggingface:sciq', 'huggingface:scitail', 'huggingface:scitldr', 'huggingface:search_qa', 'huggingface:sede', 'huggingface:selqa', 'huggingface:sem_eval_2010_task_8', 'huggingface:sem_eval_2014_task_1', 'huggingface:sem_eval_2018_task_1', 'huggingface:sem_eval_2020_task_11', 'huggingface:sent_comp', 'huggingface:senti_lex', 'huggingface:senti_ws', 'huggingface:sentiment140', 'huggingface:sepedi_ner', 'huggingface:sesotho_ner_corpus', 'huggingface:setimes', 'huggingface:setswana_ner_corpus', 'huggingface:sharc', 'huggingface:sharc_modified', 'huggingface:sick', 'huggingface:silicone', 'huggingface:simple_questions_v2', 'huggingface:siswati_ner_corpus', 'huggingface:smartdata', 'huggingface:sms_spam', 'huggingface:snips_built_in_intents', 'huggingface:snli', 'huggingface:snow_simplified_japanese_corpus', 'huggingface:so_stacksample', 'huggingface:social_bias_frames', 'huggingface:social_i_qa', 'huggingface:sofc_materials_articles', 'huggingface:sogou_news', 'huggingface:spanish_billion_words', 'huggingface:spc', 'huggingface:species_800', 'huggingface:speech_commands', 'huggingface:spider', 'huggingface:squad', 'huggingface:squad_adversarial', 'huggingface:squad_es', 'huggingface:squad_it', 'huggingface:squad_kor_v1', 'huggingface:squad_kor_v2', 'huggingface:squad_v1_pt', 'huggingface:squad_v2', 'huggingface:squadshifts', 'huggingface:srwac', 'huggingface:sst', 'huggingface:stereoset', 'huggingface:story_cloze', 'huggingface:stsb_mt_sv', 'huggingface:stsb_multi_mt', 'huggingface:style_change_detection', 'huggingface:subjqa', 'huggingface:super_glue', 'huggingface:superb', 'huggingface:swag', 'huggingface:swahili', 'huggingface:swahili_news', 'huggingface:swda', 'huggingface:swedish_medical_ner', 'huggingface:swedish_ner_corpus', 'huggingface:swedish_reviews', 'huggingface:swiss_judgment_prediction', 'huggingface:tab_fact', 'huggingface:tamilmixsentiment', 'huggingface:tanzil', 'huggingface:tapaco', 'huggingface:tashkeela', 'huggingface:taskmaster1', 'huggingface:taskmaster2', 'huggingface:taskmaster3', 'huggingface:tatoeba', 'huggingface:ted_hrlr', 'huggingface:ted_iwlst2013', 'huggingface:ted_multi', 'huggingface:ted_talks_iwslt', 'huggingface:telugu_books', 'huggingface:telugu_news', 'huggingface:tep_en_fa_para', 'huggingface:thai_toxicity_tweet', 'huggingface:thainer', 'huggingface:thaiqa_squad', 'huggingface:thaisum', 'huggingface:the_pile', 'huggingface:the_pile_books3', 'huggingface:the_pile_openwebtext2', 'huggingface:the_pile_stack_exchange', 'huggingface:tilde_model', 'huggingface:time_dial', 'huggingface:times_of_india_news_headlines', 'huggingface:timit_asr', 'huggingface:tiny_shakespeare', 'huggingface:tlc', 'huggingface:tmu_gfm_dataset', 'huggingface:totto', 'huggingface:trec', 'huggingface:trivia_qa', 'huggingface:tsac', 'huggingface:ttc4900', 'huggingface:tunizi', 'huggingface:tuple_ie', 'huggingface:turk', 'huggingface:turkish_movie_sentiment', 'huggingface:turkish_ner', 'huggingface:turkish_product_reviews', 'huggingface:turkish_shrinked_ner', 'huggingface:turku_ner_corpus', 'huggingface:tweet_eval', 'huggingface:tweet_qa', 'huggingface:tweets_ar_en_parallel', 'huggingface:tweets_hate_speech_detection', 'huggingface:twi_text_c3', 'huggingface:twi_wordsim353', 'huggingface:tydiqa', 'huggingface:ubuntu_dialogs_corpus', 'huggingface:udhr', 'huggingface:um005', 'huggingface:un_ga', 'huggingface:un_multi', 'huggingface:un_pc', 'huggingface:universal_dependencies', 'huggingface:universal_morphologies', 'huggingface:urdu_fake_news', 'huggingface:urdu_sentiment_corpus', 'huggingface:vctk', 'huggingface:vivos', 'huggingface:web_nlg', 'huggingface:web_of_science', 'huggingface:web_questions', 'huggingface:weibo_ner', 'huggingface:wi_locness', 'huggingface:wiki40b', 'huggingface:wiki_asp', 'huggingface:wiki_atomic_edits', 'huggingface:wiki_auto', 'huggingface:wiki_bio', 'huggingface:wiki_dpr', 'huggingface:wiki_hop', 'huggingface:wiki_lingua', 'huggingface:wiki_movies', 'huggingface:wiki_qa', 'huggingface:wiki_qa_ar', 'huggingface:wiki_snippets', 'huggingface:wiki_source', 'huggingface:wiki_split', 'huggingface:wiki_summary', 'huggingface:wikiann', 'huggingface:wikicorpus', 'huggingface:wikihow', 'huggingface:wikipedia', 'huggingface:wikisql', 'huggingface:wikitext', 'huggingface:wikitext_tl39', 'huggingface:wili_2018', 'huggingface:wino_bias', 'huggingface:winograd_wsc', 'huggingface:winogrande', 'huggingface:wiqa', 'huggingface:wisesight1000', 'huggingface:wisesight_sentiment', ...]
โหลดชุดข้อมูล
tfds.load
วิธีที่ง่ายที่สุดในการโหลดชุดข้อมูลคือ tfds.load
มันจะ:
- ดาวน์โหลดข้อมูลและบันทึกเป็นไฟล์
tfrecord
- โหลด
tfrecord
และสร้างtf.data.Dataset
ds = tfds.load('mnist', split='train', shuffle_files=True)
assert isinstance(ds, tf.data.Dataset)
print(ds)
<_OptionsDataset element_spec={'image': TensorSpec(shape=(28, 28, 1), dtype=tf.uint8, name=None), 'label': TensorSpec(shape=(), dtype=tf.int64, name=None)}> 2022-02-07 04:07:40.542243: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
ข้อโต้แย้งทั่วไปบางประการ:
-
split=
: แยกที่อ่าน (เช่น'train'
,['train', 'test']
,'train[80%:]'
,...) ดู คู่มือ API แยก ของเรา -
shuffle_files=
: ควบคุมว่าจะสับเปลี่ยนไฟล์ระหว่างแต่ละยุคหรือไม่ (TFDS จัดเก็บชุดข้อมูลขนาดใหญ่ในไฟล์ที่เล็กกว่าหลายไฟล์) -
data_dir=
: ตำแหน่งที่บันทึกชุดข้อมูล ( ค่าเริ่มต้นเป็น~/tensorflow_datasets/
) -
with_info=True
: ส่งคืนtfds.core.DatasetInfo
ที่มีข้อมูลเมตาของชุดข้อมูล -
download=False
: ปิดการดาวน์โหลด
tfds.builder
tfds.load
เป็น wrapper แบบบางรอบ ๆ tfds.core.DatasetBuilder
คุณสามารถรับเอาต์พุตเดียวกันได้โดยใช้ tfds.core.DatasetBuilder
API:
builder = tfds.builder('mnist')
# 1. Create the tfrecord files (no-op if already exists)
builder.download_and_prepare()
# 2. Load the `tf.data.Dataset`
ds = builder.as_dataset(split='train', shuffle_files=True)
print(ds)
<_OptionsDataset element_spec={'image': TensorSpec(shape=(28, 28, 1), dtype=tf.uint8, name=None), 'label': TensorSpec(shape=(), dtype=tf.int64, name=None)}>
tfds build
CLI
หากคุณต้องการสร้างชุดข้อมูลเฉพาะ คุณสามารถใช้ บรรทัดคำสั่ง tfds
ตัวอย่างเช่น:
tfds build mnist
ดู เอกสาร สำหรับแฟล็กที่มีอยู่
วนซ้ำชุดข้อมูล
เป็น dict
โดยค่าเริ่มต้น ออบเจ็กต์ tf.data.Dataset
มี dict
ของ tf.Tensor
s:
ds = tfds.load('mnist', split='train')
ds = ds.take(1) # Only take a single example
for example in ds: # example is `{'image': tf.Tensor, 'label': tf.Tensor}`
print(list(example.keys()))
image = example["image"]
label = example["label"]
print(image.shape, label)
['image', 'label'] (28, 28, 1) tf.Tensor(4, shape=(), dtype=int64) 2022-02-07 04:07:41.932638: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
หากต้องการทราบชื่อคีย์และโครงสร้าง dict
โปรดดูเอกสารชุดข้อมูลใน แค็ตตาล็อกของเรา ตัวอย่างเช่น: เอกสารประกอบ mnist
เป็นทูเพิล ( as_supervised=True
)
โดยใช้ as_supervised=True
คุณสามารถรับ tuple (features, label)
แทนสำหรับชุดข้อมูลภายใต้การดูแล
ds = tfds.load('mnist', split='train', as_supervised=True)
ds = ds.take(1)
for image, label in ds: # example is (image, label)
print(image.shape, label)
(28, 28, 1) tf.Tensor(4, shape=(), dtype=int64) 2022-02-07 04:07:42.593594: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
เป็นก้อน ( tfds.as_numpy
)
ใช้ tfds.as_numpy
เพื่อแปลง:
-
tf.Tensor
->np.array
-
tf.data.Dataset
->Iterator[Tree[np.array]]
(Tree
สามารถซ้อนกันโดยพลการDict
,Tuple
)
ds = tfds.load('mnist', split='train', as_supervised=True)
ds = ds.take(1)
for image, label in tfds.as_numpy(ds):
print(type(image), type(label), label)
<class 'numpy.ndarray'> <class 'numpy.int64'> 4 2022-02-07 04:07:43.220027: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
เป็นชุด tf.Tensor ( batch_size=-1
)
โดยใช้ batch_size=-1
คุณสามารถโหลดชุดข้อมูลทั้งหมดในชุดเดียว
สามารถใช้ร่วมกับ as_supervised=True
และ tfds.as_numpy
เพื่อรับข้อมูลเป็น (np.array, np.array)
:
image, label = tfds.as_numpy(tfds.load(
'mnist',
split='test',
batch_size=-1,
as_supervised=True,
))
print(type(image), image.shape)
<class 'numpy.ndarray'> (10000, 28, 28, 1)
ระวังว่าชุดข้อมูลของคุณสามารถใส่ในหน่วยความจำได้ และตัวอย่างทั้งหมดมีรูปร่างเหมือนกัน
เปรียบเทียบชุดข้อมูลของคุณ
การเปรียบเทียบชุดข้อมูลเป็นการเรียก tfds.benchmark
อย่างง่ายบน iterable ใดๆ (เช่น tf.data.Dataset
, tfds.as_numpy
,...)
ds = tfds.load('mnist', split='train')
ds = ds.batch(32).prefetch(1)
tfds.benchmark(ds, batch_size=32)
tfds.benchmark(ds, batch_size=32) # Second epoch much faster due to auto-caching
************ Summary ************ Examples/sec (First included) 42295.82 ex/sec (total: 60000 ex, 1.42 sec) Examples/sec (First only) 131.50 ex/sec (total: 32 ex, 0.24 sec) Examples/sec (First excluded) 51026.08 ex/sec (total: 59968 ex, 1.18 sec) ************ Summary ************ Examples/sec (First included) 204278.25 ex/sec (total: 60000 ex, 0.29 sec) Examples/sec (First only) 1444.72 ex/sec (total: 32 ex, 0.02 sec) Examples/sec (First excluded) 220821.83 ex/sec (total: 59968 ex, 0.27 sec)
- อย่าลืมทำให้ผลลัพธ์ปกติต่อขนาดแบทช์ด้วย
batch_size=
kwarg - โดยสรุป แบตช์การวอร์มอัพชุดแรกจะถูกแยกออกจากชุดอื่นเพื่อบันทึกเวลาการตั้งค่าพิเศษ
tf.data.Dataset
(เช่น การเริ่มต้นบัฟเฟอร์,...) - สังเกตว่าการวนซ้ำครั้งที่สองเร็วกว่ามากเนื่องจาก TFDS auto-caching
-
tfds.benchmark
ส่งคืนtfds.core.BenchmarkResult
ซึ่งสามารถตรวจสอบเพื่อการวิเคราะห์เพิ่มเติมได้
สร้างไปป์ไลน์แบบ end-to-end
หากต้องการไปต่อ คุณสามารถดู:
- ตัวอย่าง Keras แบบ end-to-end ของเราเพื่อดูไปป์ไลน์การฝึกอบรมแบบเต็ม (พร้อมแบทช์ สับเปลี่ยน,...)
- คู่มือประสิทธิภาพ ของเราในการปรับปรุงความเร็วของไปป์ไลน์ของคุณ (เคล็ดลับ: ใช้
tfds.benchmark(ds)
เพื่อเปรียบเทียบชุดข้อมูลของคุณ)
การสร้างภาพ
tfds.as_dataframe
ออบเจ็กต์ tf.data.Dataset
สามารถแปลงเป็น pandas.DataFrame
โดย tfds.as_dataframe
บน Colab
- เพิ่ม
tfds.core.DatasetInfo
เป็นอาร์กิวเมนต์ที่สองของtfds.as_dataframe
เพื่อแสดงภาพ เสียง ข้อความ วิดีโอ... - ใช้
ds.take(x)
เพื่อแสดงเฉพาะตัวอย่างx
แรกเท่านั้นpandas.DataFrame
จะโหลดชุดข้อมูลทั้งหมดในหน่วยความจำ และอาจมีราคาแพงมากในการแสดง
ds, info = tfds.load('mnist', split='train', with_info=True)
tfds.as_dataframe(ds.take(4), info)
2022-02-07 04:07:47.001241: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
tfds.show_examples
tfds.show_examples
ส่งคืน matplotlib.figure.Figure
(ตอนนี้รองรับชุดข้อมูลรูปภาพเท่านั้น):
ds, info = tfds.load('mnist', split='train', with_info=True)
fig = tfds.show_examples(ds, info)
2022-02-07 04:07:48.083706: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.ตัวยึดตำแหน่ง23
เข้าถึงข้อมูลเมตาของชุดข้อมูล
ตัวสร้างทั้งหมดรวมอ็อบเจ็กต์ tfds.core.DatasetInfo
ที่มีข้อมูลเมตาของชุดข้อมูล
สามารถเข้าถึงได้ผ่าน:
-
tfds.load
API:
ds, info = tfds.load('mnist', with_info=True)
builder = tfds.builder('mnist')
info = builder.info
ข้อมูลชุดข้อมูลประกอบด้วยข้อมูลเพิ่มเติมเกี่ยวกับชุดข้อมูล (เวอร์ชัน การอ้างอิง หน้าแรก คำอธิบาย...)
print(info)
tfds.core.DatasetInfo( name='mnist', full_name='mnist/3.0.1', description=""" The MNIST database of handwritten digits. """, homepage='http://yann.lecun.com/exdb/mnist/', data_path='gs://tensorflow-datasets/datasets/mnist/3.0.1', download_size=11.06 MiB, dataset_size=21.00 MiB, features=FeaturesDict({ 'image': Image(shape=(28, 28, 1), dtype=tf.uint8), 'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=10), }), supervised_keys=('image', 'label'), disable_shuffling=False, splits={ 'test': <SplitInfo num_examples=10000, num_shards=1>, 'train': <SplitInfo num_examples=60000, num_shards=1>, }, citation="""@article{lecun2010mnist, title={MNIST handwritten digit database}, author={LeCun, Yann and Cortes, Corinna and Burges, CJ}, journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist}, volume={2}, year={2010} }""", )
ข้อมูลเมตาของฟีเจอร์ (ชื่อป้ายกำกับ รูปร่างของรูปภาพ...)
เข้าถึง tfds.features.FeatureDict
:
info.features
FeaturesDict({ 'image': Image(shape=(28, 28, 1), dtype=tf.uint8), 'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=10), })
จำนวนคลาส ชื่อป้ายกำกับ:
print(info.features["label"].num_classes)
print(info.features["label"].names)
print(info.features["label"].int2str(7)) # Human readable version (8 -> 'cat')
print(info.features["label"].str2int('7'))
10 ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] 7 7
รูปร่าง dtypes:
print(info.features.shape)
print(info.features.dtype)
print(info.features['image'].shape)
print(info.features['image'].dtype)
{'image': (28, 28, 1), 'label': ()} {'image': tf.uint8, 'label': tf.int64} (28, 28, 1) <dtype: 'uint8'>ตัวยึดตำแหน่ง33
แยกข้อมูลเมตา (เช่น ชื่อแยก จำนวนตัวอย่าง...)
เข้าถึง tfds.core.SplitDict
:
print(info.splits)
{'test': <SplitInfo num_examples=10000, num_shards=1>, 'train': <SplitInfo num_examples=60000, num_shards=1>}
แยกที่มีจำหน่าย:
print(list(info.splits.keys()))
['test', 'train']
รับข้อมูลเกี่ยวกับการแยกแต่ละรายการ:
print(info.splits['train'].num_examples)
print(info.splits['train'].filenames)
print(info.splits['train'].num_shards)
60000 ['gs://tensorflow-datasets/datasets/mnist/3.0.1/mnist-train.tfrecord-00000-of-00001'] 1ตัวยึดตำแหน่ง39
นอกจากนี้ยังทำงานร่วมกับ subsplit API:
print(info.splits['train[15%:75%]'].num_examples)
print(info.splits['train[15%:75%]'].file_instructions)
36000 [FileInstruction(filename='gs://tensorflow-datasets/datasets/mnist/3.0.1/mnist-train.tfrecord-00000-of-00001', skip=9000, take=36000, num_examples=36000)]ตัวยึดตำแหน่ง41
การแก้ไขปัญหา
ดาวน์โหลดด้วยตนเอง (หากการดาวน์โหลดล้มเหลว)
หากการดาวน์โหลดล้มเหลวด้วยเหตุผลบางประการ (เช่น ออฟไลน์,...) คุณสามารถดาวน์โหลดข้อมูลได้ด้วยตนเองและวางไว้ใน manual_dir
(ค่าเริ่มต้นเป็น ~/tensorflow_datasets/download/manual/
หากต้องการทราบว่าจะดาวน์โหลด URL ใด ให้ดูที่:
สำหรับชุดข้อมูลใหม่ (ใช้งานเป็นโฟลเดอร์):
tensorflow_datasets/
<type>/<dataset_name>/checksums.tsv
ตัวอย่างเช่น:tensorflow_datasets/text/bool_q/checksums.tsv
คุณสามารถค้นหาตำแหน่งต้นทางของชุดข้อมูลได้ใน แค็ตตาล็อกของเรา
สำหรับชุดข้อมูลเก่า:
tensorflow_datasets/url_checksums/<dataset_name>.txt
แก้ไข NonMatchingChecksumError
TFDS ช่วยให้มั่นใจถึงการกำหนดโดยการตรวจสอบผลรวมของเช็คซัมของ URL ที่ดาวน์โหลด หาก NonMatchingChecksumError
ขึ้น อาจบ่งชี้ว่า:
- เว็บไซต์อาจล่ม (เช่น
503 status code
) กรุณาตรวจสอบ url - สำหรับ URL ของ Google ไดรฟ์ โปรดลองอีกครั้งในภายหลัง เนื่องจากบางครั้งไดรฟ์อาจปฏิเสธการดาวน์โหลดเมื่อมีผู้เข้าถึง URL เดียวกันมากเกินไป ดู จุดบกพร่อง
- ไฟล์ชุดข้อมูลดั้งเดิมอาจได้รับการอัปเดตแล้ว ในกรณีนี้ ควรอัปเดตตัวสร้างชุดข้อมูล TFDS โปรดเปิดปัญหา Github ใหม่หรือประชาสัมพันธ์:
- ลงทะเบียน checksums ใหม่ด้วย
tfds build --register_checksums
- อัปเดตรหัสการสร้างชุดข้อมูลในที่สุด
- อัปเดตชุดข้อมูล
VERSION
- อัปเดตชุดข้อมูล
RELEASE_NOTES
: อะไรทำให้เช็คซัมเปลี่ยนแปลง ตัวอย่างบางส่วนเปลี่ยนไปหรือไม่? - ตรวจสอบให้แน่ใจว่ายังคงสร้างชุดข้อมูลได้
- ส่ง PR . ให้เรา
- ลงทะเบียน checksums ใหม่ด้วย
การอ้างอิง
หากคุณกำลังใช้ tensorflow-datasets
สำหรับกระดาษ โปรดใส่ข้อมูลอ้างอิงต่อไปนี้ นอกเหนือจากการอ้างอิงเฉพาะสำหรับชุดข้อมูลที่ใช้ (ซึ่งสามารถพบได้ใน แค็ตตาล็อกชุดข้อมูล )
@misc{TFDS,
title = { {TensorFlow Datasets}, A collection of ready-to-use datasets},
howpublished = {\url{https://www.tensorflow.org/datasets} },
}