Zbiory danych TensorFlow

TFDS zapewnia kolekcję gotowych do użycia zestawów danych do użytku z TensorFlow, Jax i innymi platformami uczenia maszynowego.

Obsługuje pobieranie i przygotowywanie danych w sposób deterministyczny oraz konstruowanie tf.data.Dataset (lub np.array ).

Zobacz na TensorFlow.org Uruchom w Google Colab Wyświetl źródło na GitHub Pobierz notatnik

Instalacja

TFDS występuje w dwóch pakietach:

  • pip install tensorflow-datasets : stabilna wersja, wydawana co kilka miesięcy.
  • pip install tfds-nightly : Wydawany codziennie, zawiera ostatnie wersje zestawów danych.

Ta współpraca używa tfds-nightly :

pip install -q tfds-nightly tensorflow matplotlib
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

import tensorflow_datasets as tfds

Znajdź dostępne zbiory danych

Wszystkie konstruktory zestawów danych są podklasą tfds.core.DatasetBuilder . Aby uzyskać listę dostępnych budowniczych, użyj tfds.list_builders() lub przejrzyj nasz katalog .

tfds.list_builders()
['abstract_reasoning',
 'accentdb',
 'aeslc',
 'aflw2k3d',
 'ag_news_subset',
 'ai2_arc',
 'ai2_arc_with_ir',
 'amazon_us_reviews',
 'anli',
 'arc',
 'asset',
 'assin2',
 'bair_robot_pushing_small',
 'bccd',
 'beans',
 'bee_dataset',
 'big_patent',
 'bigearthnet',
 'billsum',
 'binarized_mnist',
 'binary_alpha_digits',
 'blimp',
 'booksum',
 'bool_q',
 'c4',
 'caltech101',
 'caltech_birds2010',
 'caltech_birds2011',
 'cardiotox',
 'cars196',
 'cassava',
 'cats_vs_dogs',
 'celeb_a',
 'celeb_a_hq',
 'cfq',
 'cherry_blossoms',
 'chexpert',
 'cifar10',
 'cifar100',
 'cifar10_1',
 'cifar10_corrupted',
 'citrus_leaves',
 'cityscapes',
 'civil_comments',
 'clevr',
 'clic',
 'clinc_oos',
 'cmaterdb',
 'cnn_dailymail',
 'coco',
 'coco_captions',
 'coil100',
 'colorectal_histology',
 'colorectal_histology_large',
 'common_voice',
 'coqa',
 'cos_e',
 'cosmos_qa',
 'covid19',
 'covid19sum',
 'crema_d',
 'cs_restaurants',
 'curated_breast_imaging_ddsm',
 'cycle_gan',
 'd4rl_adroit_door',
 'd4rl_adroit_hammer',
 'd4rl_adroit_pen',
 'd4rl_adroit_relocate',
 'd4rl_antmaze',
 'd4rl_mujoco_ant',
 'd4rl_mujoco_halfcheetah',
 'd4rl_mujoco_hopper',
 'd4rl_mujoco_walker2d',
 'dart',
 'davis',
 'deep_weeds',
 'definite_pronoun_resolution',
 'dementiabank',
 'diabetic_retinopathy_detection',
 'diamonds',
 'div2k',
 'dmlab',
 'doc_nli',
 'dolphin_number_word',
 'domainnet',
 'downsampled_imagenet',
 'drop',
 'dsprites',
 'dtd',
 'duke_ultrasound',
 'e2e_cleaned',
 'efron_morris75',
 'emnist',
 'eraser_multi_rc',
 'esnli',
 'eurosat',
 'fashion_mnist',
 'flic',
 'flores',
 'food101',
 'forest_fires',
 'fuss',
 'gap',
 'geirhos_conflict_stimuli',
 'gem',
 'genomics_ood',
 'german_credit_numeric',
 'gigaword',
 'glue',
 'goemotions',
 'gov_report',
 'gpt3',
 'gref',
 'groove',
 'grounded_scan',
 'gsm8k',
 'gtzan',
 'gtzan_music_speech',
 'hellaswag',
 'higgs',
 'horses_or_humans',
 'howell',
 'i_naturalist2017',
 'i_naturalist2018',
 'imagenet2012',
 'imagenet2012_corrupted',
 'imagenet2012_multilabel',
 'imagenet2012_real',
 'imagenet2012_subset',
 'imagenet_a',
 'imagenet_lt',
 'imagenet_r',
 'imagenet_resized',
 'imagenet_sketch',
 'imagenet_v2',
 'imagenette',
 'imagewang',
 'imdb_reviews',
 'irc_disentanglement',
 'iris',
 'istella',
 'kddcup99',
 'kitti',
 'kmnist',
 'lambada',
 'lfw',
 'librispeech',
 'librispeech_lm',
 'libritts',
 'ljspeech',
 'lm1b',
 'locomotion',
 'lost_and_found',
 'lsun',
 'lvis',
 'malaria',
 'math_dataset',
 'math_qa',
 'mctaco',
 'mlqa',
 'mnist',
 'mnist_corrupted',
 'movie_lens',
 'movie_rationales',
 'movielens',
 'moving_mnist',
 'mslr_web',
 'multi_news',
 'multi_nli',
 'multi_nli_mismatch',
 'natural_questions',
 'natural_questions_open',
 'newsroom',
 'nsynth',
 'nyu_depth_v2',
 'ogbg_molpcba',
 'omniglot',
 'open_images_challenge2019_detection',
 'open_images_v4',
 'openbookqa',
 'opinion_abstracts',
 'opinosis',
 'opus',
 'oxford_flowers102',
 'oxford_iiit_pet',
 'para_crawl',
 'pass',
 'patch_camelyon',
 'paws_wiki',
 'paws_x_wiki',
 'penguins',
 'pet_finder',
 'pg19',
 'piqa',
 'places365_small',
 'plant_leaves',
 'plant_village',
 'plantae_k',
 'protein_net',
 'qa4mre',
 'qasc',
 'quac',
 'quality',
 'quickdraw_bitmap',
 'race',
 'radon',
 'reddit',
 'reddit_disentanglement',
 'reddit_tifu',
 'ref_coco',
 'resisc45',
 'rlu_atari',
 'rlu_atari_checkpoints',
 'rlu_atari_checkpoints_ordered',
 'rlu_dmlab_explore_object_rewards_few',
 'rlu_dmlab_explore_object_rewards_many',
 'rlu_dmlab_rooms_select_nonmatching_object',
 'rlu_dmlab_rooms_watermaze',
 'rlu_dmlab_seekavoid_arena01',
 'rlu_rwrl',
 'robomimic_ph',
 'robonet',
 'robosuite_panda_pick_place_can',
 'rock_paper_scissors',
 'rock_you',
 's3o4d',
 'salient_span_wikipedia',
 'samsum',
 'savee',
 'scan',
 'scene_parse150',
 'schema_guided_dialogue',
 'scicite',
 'scientific_papers',
 'scrolls',
 'sentiment140',
 'shapes3d',
 'siscore',
 'smallnorb',
 'smartwatch_gestures',
 'snli',
 'so2sat',
 'speech_commands',
 'spoken_digit',
 'squad',
 'squad_question_generation',
 'stanford_dogs',
 'stanford_online_products',
 'star_cfq',
 'starcraft_video',
 'stl10',
 'story_cloze',
 'summscreen',
 'sun397',
 'super_glue',
 'svhn_cropped',
 'symmetric_solids',
 'tao',
 'ted_hrlr_translate',
 'ted_multi_translate',
 'tedlium',
 'tf_flowers',
 'the300w_lp',
 'tiny_shakespeare',
 'titanic',
 'trec',
 'trivia_qa',
 'tydi_qa',
 'uc_merced',
 'ucf101',
 'vctk',
 'visual_domain_decathlon',
 'voc',
 'voxceleb',
 'voxforge',
 'waymo_open_dataset',
 'web_nlg',
 'web_questions',
 'wider_face',
 'wiki40b',
 'wiki_auto',
 'wiki_bio',
 'wiki_table_questions',
 'wiki_table_text',
 'wikiann',
 'wikihow',
 'wikipedia',
 'wikipedia_toxicity_subtypes',
 'wine_quality',
 'winogrande',
 'wit',
 'wit_kaggle',
 'wmt13_translate',
 'wmt14_translate',
 'wmt15_translate',
 'wmt16_translate',
 'wmt17_translate',
 'wmt18_translate',
 'wmt19_translate',
 'wmt_t2t_translate',
 'wmt_translate',
 'wordnet',
 'wsc273',
 'xnli',
 'xquad',
 'xsum',
 'xtreme_pawsx',
 'xtreme_xnli',
 'yelp_polarity_reviews',
 'yes_no',
 'youtube_vis',
 'huggingface:acronym_identification',
 'huggingface:ade_corpus_v2',
 'huggingface:adversarial_qa',
 'huggingface:aeslc',
 'huggingface:afrikaans_ner_corpus',
 'huggingface:ag_news',
 'huggingface:ai2_arc',
 'huggingface:air_dialogue',
 'huggingface:ajgt_twitter_ar',
 'huggingface:allegro_reviews',
 'huggingface:allocine',
 'huggingface:alt',
 'huggingface:amazon_polarity',
 'huggingface:amazon_reviews_multi',
 'huggingface:amazon_us_reviews',
 'huggingface:ambig_qa',
 'huggingface:americas_nli',
 'huggingface:ami',
 'huggingface:amttl',
 'huggingface:anli',
 'huggingface:app_reviews',
 'huggingface:aqua_rat',
 'huggingface:aquamuse',
 'huggingface:ar_cov19',
 'huggingface:ar_res_reviews',
 'huggingface:ar_sarcasm',
 'huggingface:arabic_billion_words',
 'huggingface:arabic_pos_dialect',
 'huggingface:arabic_speech_corpus',
 'huggingface:arcd',
 'huggingface:arsentd_lev',
 'huggingface:art',
 'huggingface:arxiv_dataset',
 'huggingface:ascent_kb',
 'huggingface:aslg_pc12',
 'huggingface:asnq',
 'huggingface:asset',
 'huggingface:assin',
 'huggingface:assin2',
 'huggingface:atomic',
 'huggingface:autshumato',
 'huggingface:babi_qa',
 'huggingface:banking77',
 'huggingface:bbaw_egyptian',
 'huggingface:bbc_hindi_nli',
 'huggingface:bc2gm_corpus',
 'huggingface:beans',
 'huggingface:best2009',
 'huggingface:bianet',
 'huggingface:bible_para',
 'huggingface:big_patent',
 'huggingface:billsum',
 'huggingface:bing_coronavirus_query_set',
 'huggingface:biomrc',
 'huggingface:biosses',
 'huggingface:blbooksgenre',
 'huggingface:blended_skill_talk',
 'huggingface:blimp',
 'huggingface:blog_authorship_corpus',
 'huggingface:bn_hate_speech',
 'huggingface:bookcorpus',
 'huggingface:bookcorpusopen',
 'huggingface:boolq',
 'huggingface:bprec',
 'huggingface:break_data',
 'huggingface:brwac',
 'huggingface:bsd_ja_en',
 'huggingface:bswac',
 'huggingface:c3',
 'huggingface:c4',
 'huggingface:cail2018',
 'huggingface:caner',
 'huggingface:capes',
 'huggingface:casino',
 'huggingface:catalonia_independence',
 'huggingface:cats_vs_dogs',
 'huggingface:cawac',
 'huggingface:cbt',
 'huggingface:cc100',
 'huggingface:cc_news',
 'huggingface:ccaligned_multilingual',
 'huggingface:cdsc',
 'huggingface:cdt',
 'huggingface:cedr',
 'huggingface:cfq',
 'huggingface:chr_en',
 'huggingface:cifar10',
 'huggingface:cifar100',
 'huggingface:circa',
 'huggingface:civil_comments',
 'huggingface:clickbait_news_bg',
 'huggingface:climate_fever',
 'huggingface:clinc_oos',
 'huggingface:clue',
 'huggingface:cmrc2018',
 'huggingface:cmu_hinglish_dog',
 'huggingface:cnn_dailymail',
 'huggingface:coached_conv_pref',
 'huggingface:coarse_discourse',
 'huggingface:codah',
 'huggingface:code_search_net',
 'huggingface:code_x_glue_cc_clone_detection_big_clone_bench',
 'huggingface:code_x_glue_cc_clone_detection_poj104',
 'huggingface:code_x_glue_cc_cloze_testing_all',
 'huggingface:code_x_glue_cc_cloze_testing_maxmin',
 'huggingface:code_x_glue_cc_code_completion_line',
 'huggingface:code_x_glue_cc_code_completion_token',
 'huggingface:code_x_glue_cc_code_refinement',
 'huggingface:code_x_glue_cc_code_to_code_trans',
 'huggingface:code_x_glue_cc_defect_detection',
 'huggingface:code_x_glue_ct_code_to_text',
 'huggingface:code_x_glue_tc_nl_code_search_adv',
 'huggingface:code_x_glue_tc_text_to_code',
 'huggingface:code_x_glue_tt_text_to_text',
 'huggingface:com_qa',
 'huggingface:common_gen',
 'huggingface:common_language',
 'huggingface:common_voice',
 'huggingface:commonsense_qa',
 'huggingface:competition_math',
 'huggingface:compguesswhat',
 'huggingface:conceptnet5',
 'huggingface:conll2000',
 'huggingface:conll2002',
 'huggingface:conll2003',
 'huggingface:conllpp',
 'huggingface:conv_ai',
 'huggingface:conv_ai_2',
 'huggingface:conv_ai_3',
 'huggingface:conv_questions',
 'huggingface:coqa',
 'huggingface:cord19',
 'huggingface:cornell_movie_dialog',
 'huggingface:cos_e',
 'huggingface:cosmos_qa',
 'huggingface:counter',
 'huggingface:covid_qa_castorini',
 'huggingface:covid_qa_deepset',
 'huggingface:covid_qa_ucsd',
 'huggingface:covid_tweets_japanese',
 'huggingface:covost2',
 'huggingface:craigslist_bargains',
 'huggingface:crawl_domain',
 'huggingface:crd3',
 'huggingface:crime_and_punish',
 'huggingface:crows_pairs',
 'huggingface:cryptonite',
 'huggingface:cs_restaurants',
 'huggingface:cuad',
 'huggingface:curiosity_dialogs',
 'huggingface:daily_dialog',
 'huggingface:dane',
 'huggingface:danish_political_comments',
 'huggingface:dart',
 'huggingface:datacommons_factcheck',
 'huggingface:dbpedia_14',
 'huggingface:dbrd',
 'huggingface:deal_or_no_dialog',
 'huggingface:definite_pronoun_resolution',
 'huggingface:dengue_filipino',
 'huggingface:dialog_re',
 'huggingface:diplomacy_detection',
 'huggingface:disaster_response_messages',
 'huggingface:discofuse',
 'huggingface:discovery',
 'huggingface:disfl_qa',
 'huggingface:doc2dial',
 'huggingface:docred',
 'huggingface:doqa',
 'huggingface:dream',
 'huggingface:drop',
 'huggingface:duorc',
 'huggingface:dutch_social',
 'huggingface:dyk',
 'huggingface:e2e_nlg',
 'huggingface:e2e_nlg_cleaned',
 'huggingface:ecb',
 'huggingface:ecthr_cases',
 'huggingface:eduge',
 'huggingface:ehealth_kd',
 'huggingface:eitb_parcc',
 'huggingface:eli5',
 'huggingface:eli5_category',
 'huggingface:emea',
 'huggingface:emo',
 'huggingface:emotion',
 'huggingface:emotone_ar',
 'huggingface:empathetic_dialogues',
 'huggingface:enriched_web_nlg',
 'huggingface:eraser_multi_rc',
 'huggingface:esnli',
 'huggingface:eth_py150_open',
 'huggingface:ethos',
 'huggingface:eu_regulatory_ir',
 'huggingface:eurlex',
 'huggingface:euronews',
 'huggingface:europa_eac_tm',
 'huggingface:europa_ecdc_tm',
 'huggingface:europarl_bilingual',
 'huggingface:event2Mind',
 'huggingface:evidence_infer_treatment',
 'huggingface:exams',
 'huggingface:factckbr',
 'huggingface:fake_news_english',
 'huggingface:fake_news_filipino',
 'huggingface:farsi_news',
 'huggingface:fashion_mnist',
 'huggingface:fever',
 'huggingface:few_rel',
 'huggingface:financial_phrasebank',
 'huggingface:finer',
 'huggingface:flores',
 'huggingface:flue',
 'huggingface:food101',
 'huggingface:fquad',
 'huggingface:freebase_qa',
 'huggingface:gap',
 'huggingface:gem',
 'huggingface:generated_reviews_enth',
 'huggingface:generics_kb',
 'huggingface:german_legal_entity_recognition',
 'huggingface:germaner',
 'huggingface:germeval_14',
 'huggingface:giga_fren',
 'huggingface:gigaword',
 'huggingface:glucose',
 'huggingface:glue',
 'huggingface:gnad10',
 'huggingface:go_emotions',
 'huggingface:gooaq',
 'huggingface:google_wellformed_query',
 'huggingface:grail_qa',
 'huggingface:great_code',
 'huggingface:greek_legal_code',
 'huggingface:guardian_authorship',
 'huggingface:gutenberg_time',
 'huggingface:hans',
 'huggingface:hansards',
 'huggingface:hard',
 'huggingface:harem',
 'huggingface:has_part',
 'huggingface:hate_offensive',
 'huggingface:hate_speech18',
 'huggingface:hate_speech_filipino',
 'huggingface:hate_speech_offensive',
 'huggingface:hate_speech_pl',
 'huggingface:hate_speech_portuguese',
 'huggingface:hatexplain',
 'huggingface:hausa_voa_ner',
 'huggingface:hausa_voa_topics',
 'huggingface:hda_nli_hindi',
 'huggingface:head_qa',
 'huggingface:health_fact',
 'huggingface:hebrew_projectbenyehuda',
 'huggingface:hebrew_sentiment',
 'huggingface:hebrew_this_world',
 'huggingface:hellaswag',
 'huggingface:hendrycks_test',
 'huggingface:hind_encorp',
 'huggingface:hindi_discourse',
 'huggingface:hippocorpus',
 'huggingface:hkcancor',
 'huggingface:hlgd',
 'huggingface:hope_edi',
 'huggingface:hotpot_qa',
 'huggingface:hover',
 'huggingface:hrenwac_para',
 'huggingface:hrwac',
 'huggingface:humicroedit',
 'huggingface:hybrid_qa',
 'huggingface:hyperpartisan_news_detection',
 'huggingface:iapp_wiki_qa_squad',
 'huggingface:id_clickbait',
 'huggingface:id_liputan6',
 'huggingface:id_nergrit_corpus',
 'huggingface:id_newspapers_2018',
 'huggingface:id_panl_bppt',
 'huggingface:id_puisi',
 'huggingface:igbo_english_machine_translation',
 'huggingface:igbo_monolingual',
 'huggingface:igbo_ner',
 'huggingface:ilist',
 'huggingface:imdb',
 'huggingface:imdb_urdu_reviews',
 'huggingface:imppres',
 'huggingface:indic_glue',
 'huggingface:indonli',
 'huggingface:indonlu',
 'huggingface:inquisitive_qg',
 'huggingface:interpress_news_category_tr',
 'huggingface:interpress_news_category_tr_lite',
 'huggingface:irc_disentangle',
 'huggingface:isixhosa_ner_corpus',
 'huggingface:isizulu_ner_corpus',
 'huggingface:iwslt2017',
 'huggingface:jeopardy',
 'huggingface:jfleg',
 'huggingface:jigsaw_toxicity_pred',
 'huggingface:jigsaw_unintended_bias',
 'huggingface:jnlpba',
 'huggingface:journalists_questions',
 'huggingface:kan_hope',
 'huggingface:kannada_news',
 'huggingface:kd_conv',
 'huggingface:kde4',
 'huggingface:kelm',
 'huggingface:kilt_tasks',
 'huggingface:kilt_wikipedia',
 'huggingface:kinnews_kirnews',
 'huggingface:klue',
 'huggingface:kor_3i4k',
 'huggingface:kor_hate',
 'huggingface:kor_ner',
 'huggingface:kor_nli',
 'huggingface:kor_nlu',
 'huggingface:kor_qpair',
 'huggingface:kor_sae',
 'huggingface:kor_sarcasm',
 'huggingface:labr',
 'huggingface:lama',
 'huggingface:lambada',
 'huggingface:large_spanish_corpus',
 'huggingface:laroseda',
 'huggingface:lc_quad',
 'huggingface:lener_br',
 'huggingface:lex_glue',
 'huggingface:liar',
 'huggingface:librispeech_asr',
 'huggingface:librispeech_lm',
 'huggingface:limit',
 'huggingface:lince',
 'huggingface:linnaeus',
 'huggingface:liveqa',
 'huggingface:lj_speech',
 'huggingface:lm1b',
 'huggingface:lst20',
 'huggingface:m_lama',
 'huggingface:mac_morpho',
 'huggingface:makhzan',
 'huggingface:masakhaner',
 'huggingface:math_dataset',
 'huggingface:math_qa',
 'huggingface:matinf',
 'huggingface:mbpp',
 'huggingface:mc4',
 'huggingface:mc_taco',
 'huggingface:md_gender_bias',
 'huggingface:mdd',
 'huggingface:med_hop',
 'huggingface:medal',
 'huggingface:medical_dialog',
 'huggingface:medical_questions_pairs',
 'huggingface:menyo20k_mt',
 'huggingface:meta_woz',
 'huggingface:metooma',
 'huggingface:metrec',
 'huggingface:miam',
 'huggingface:mkb',
 'huggingface:mkqa',
 'huggingface:mlqa',
 'huggingface:mlsum',
 'huggingface:mnist',
 'huggingface:mocha',
 'huggingface:moroco',
 'huggingface:movie_rationales',
 'huggingface:mrqa',
 'huggingface:ms_marco',
 'huggingface:ms_terms',
 'huggingface:msr_genomics_kbcomp',
 'huggingface:msr_sqa',
 'huggingface:msr_text_compression',
 'huggingface:msr_zhen_translation_parity',
 'huggingface:msra_ner',
 'huggingface:mt_eng_vietnamese',
 'huggingface:muchocine',
 'huggingface:multi_booked',
 'huggingface:multi_eurlex',
 'huggingface:multi_news',
 'huggingface:multi_nli',
 'huggingface:multi_nli_mismatch',
 'huggingface:multi_para_crawl',
 'huggingface:multi_re_qa',
 'huggingface:multi_woz_v22',
 'huggingface:multi_x_science_sum',
 'huggingface:multidoc2dial',
 'huggingface:multilingual_librispeech',
 'huggingface:mutual_friends',
 'huggingface:mwsc',
 'huggingface:myanmar_news',
 'huggingface:narrativeqa',
 'huggingface:narrativeqa_manual',
 'huggingface:natural_questions',
 'huggingface:ncbi_disease',
 'huggingface:nchlt',
 'huggingface:ncslgr',
 'huggingface:nell',
 'huggingface:neural_code_search',
 'huggingface:news_commentary',
 'huggingface:newsgroup',
 'huggingface:newsph',
 'huggingface:newsph_nli',
 'huggingface:newspop',
 'huggingface:newsqa',
 'huggingface:newsroom',
 'huggingface:nkjp-ner',
 'huggingface:nli_tr',
 'huggingface:nlu_evaluation_data',
 'huggingface:norec',
 'huggingface:norne',
 'huggingface:norwegian_ner',
 'huggingface:nq_open',
 'huggingface:nsmc',
 'huggingface:numer_sense',
 'huggingface:numeric_fused_head',
 'huggingface:oclar',
 'huggingface:offcombr',
 'huggingface:offenseval2020_tr',
 'huggingface:offenseval_dravidian',
 'huggingface:ofis_publik',
 'huggingface:ohsumed',
 'huggingface:ollie',
 'huggingface:omp',
 'huggingface:onestop_english',
 'huggingface:onestop_qa',
 'huggingface:open_subtitles',
 'huggingface:openai_humaneval',
 'huggingface:openbookqa',
 'huggingface:openslr',
 'huggingface:openwebtext',
 'huggingface:opinosis',
 'huggingface:opus100',
 'huggingface:opus_books',
 'huggingface:opus_dgt',
 'huggingface:opus_dogc',
 'huggingface:opus_elhuyar',
 'huggingface:opus_euconst',
 'huggingface:opus_finlex',
 'huggingface:opus_fiskmo',
 'huggingface:opus_gnome',
 'huggingface:opus_infopankki',
 'huggingface:opus_memat',
 'huggingface:opus_montenegrinsubs',
 'huggingface:opus_openoffice',
 'huggingface:opus_paracrawl',
 'huggingface:opus_rf',
 'huggingface:opus_tedtalks',
 'huggingface:opus_ubuntu',
 'huggingface:opus_wikipedia',
 'huggingface:opus_xhosanavy',
 'huggingface:orange_sum',
 'huggingface:oscar',
 'huggingface:para_crawl',
 'huggingface:para_pat',
 'huggingface:parsinlu_reading_comprehension',
 'huggingface:paws',
 'huggingface:paws-x',
 'huggingface:pec',
 'huggingface:peer_read',
 'huggingface:peoples_daily_ner',
 'huggingface:per_sent',
 'huggingface:persian_ner',
 'huggingface:pg19',
 'huggingface:php',
 'huggingface:piaf',
 'huggingface:pib',
 'huggingface:piqa',
 'huggingface:pn_summary',
 'huggingface:poem_sentiment',
 'huggingface:polemo2',
 'huggingface:poleval2019_cyberbullying',
 'huggingface:poleval2019_mt',
 'huggingface:polsum',
 'huggingface:polyglot_ner',
 'huggingface:prachathai67k',
 'huggingface:pragmeval',
 'huggingface:proto_qa',
 'huggingface:psc',
 'huggingface:ptb_text_only',
 'huggingface:pubmed',
 'huggingface:pubmed_qa',
 'huggingface:py_ast',
 'huggingface:qa4mre',
 'huggingface:qa_srl',
 'huggingface:qa_zre',
 'huggingface:qangaroo',
 'huggingface:qanta',
 'huggingface:qasc',
 'huggingface:qasper',
 'huggingface:qed',
 'huggingface:qed_amara',
 'huggingface:quac',
 'huggingface:quail',
 'huggingface:quarel',
 'huggingface:quartz',
 'huggingface:quora',
 'huggingface:quoref',
 'huggingface:race',
 'huggingface:re_dial',
 'huggingface:reasoning_bg',
 'huggingface:recipe_nlg',
 'huggingface:reclor',
 'huggingface:reddit',
 'huggingface:reddit_tifu',
 'huggingface:refresd',
 'huggingface:reuters21578',
 'huggingface:riddle_sense',
 'huggingface:ro_sent',
 'huggingface:ro_sts',
 'huggingface:ro_sts_parallel',
 'huggingface:roman_urdu',
 'huggingface:ronec',
 'huggingface:ropes',
 'huggingface:rotten_tomatoes',
 'huggingface:russian_super_glue',
 'huggingface:s2orc',
 'huggingface:samsum',
 'huggingface:sanskrit_classic',
 'huggingface:saudinewsnet',
 'huggingface:sberquad',
 'huggingface:scan',
 'huggingface:scb_mt_enth_2020',
 'huggingface:schema_guided_dstc8',
 'huggingface:scicite',
 'huggingface:scielo',
 'huggingface:scientific_papers',
 'huggingface:scifact',
 'huggingface:sciq',
 'huggingface:scitail',
 'huggingface:scitldr',
 'huggingface:search_qa',
 'huggingface:sede',
 'huggingface:selqa',
 'huggingface:sem_eval_2010_task_8',
 'huggingface:sem_eval_2014_task_1',
 'huggingface:sem_eval_2018_task_1',
 'huggingface:sem_eval_2020_task_11',
 'huggingface:sent_comp',
 'huggingface:senti_lex',
 'huggingface:senti_ws',
 'huggingface:sentiment140',
 'huggingface:sepedi_ner',
 'huggingface:sesotho_ner_corpus',
 'huggingface:setimes',
 'huggingface:setswana_ner_corpus',
 'huggingface:sharc',
 'huggingface:sharc_modified',
 'huggingface:sick',
 'huggingface:silicone',
 'huggingface:simple_questions_v2',
 'huggingface:siswati_ner_corpus',
 'huggingface:smartdata',
 'huggingface:sms_spam',
 'huggingface:snips_built_in_intents',
 'huggingface:snli',
 'huggingface:snow_simplified_japanese_corpus',
 'huggingface:so_stacksample',
 'huggingface:social_bias_frames',
 'huggingface:social_i_qa',
 'huggingface:sofc_materials_articles',
 'huggingface:sogou_news',
 'huggingface:spanish_billion_words',
 'huggingface:spc',
 'huggingface:species_800',
 'huggingface:speech_commands',
 'huggingface:spider',
 'huggingface:squad',
 'huggingface:squad_adversarial',
 'huggingface:squad_es',
 'huggingface:squad_it',
 'huggingface:squad_kor_v1',
 'huggingface:squad_kor_v2',
 'huggingface:squad_v1_pt',
 'huggingface:squad_v2',
 'huggingface:squadshifts',
 'huggingface:srwac',
 'huggingface:sst',
 'huggingface:stereoset',
 'huggingface:story_cloze',
 'huggingface:stsb_mt_sv',
 'huggingface:stsb_multi_mt',
 'huggingface:style_change_detection',
 'huggingface:subjqa',
 'huggingface:super_glue',
 'huggingface:superb',
 'huggingface:swag',
 'huggingface:swahili',
 'huggingface:swahili_news',
 'huggingface:swda',
 'huggingface:swedish_medical_ner',
 'huggingface:swedish_ner_corpus',
 'huggingface:swedish_reviews',
 'huggingface:swiss_judgment_prediction',
 'huggingface:tab_fact',
 'huggingface:tamilmixsentiment',
 'huggingface:tanzil',
 'huggingface:tapaco',
 'huggingface:tashkeela',
 'huggingface:taskmaster1',
 'huggingface:taskmaster2',
 'huggingface:taskmaster3',
 'huggingface:tatoeba',
 'huggingface:ted_hrlr',
 'huggingface:ted_iwlst2013',
 'huggingface:ted_multi',
 'huggingface:ted_talks_iwslt',
 'huggingface:telugu_books',
 'huggingface:telugu_news',
 'huggingface:tep_en_fa_para',
 'huggingface:thai_toxicity_tweet',
 'huggingface:thainer',
 'huggingface:thaiqa_squad',
 'huggingface:thaisum',
 'huggingface:the_pile',
 'huggingface:the_pile_books3',
 'huggingface:the_pile_openwebtext2',
 'huggingface:the_pile_stack_exchange',
 'huggingface:tilde_model',
 'huggingface:time_dial',
 'huggingface:times_of_india_news_headlines',
 'huggingface:timit_asr',
 'huggingface:tiny_shakespeare',
 'huggingface:tlc',
 'huggingface:tmu_gfm_dataset',
 'huggingface:totto',
 'huggingface:trec',
 'huggingface:trivia_qa',
 'huggingface:tsac',
 'huggingface:ttc4900',
 'huggingface:tunizi',
 'huggingface:tuple_ie',
 'huggingface:turk',
 'huggingface:turkish_movie_sentiment',
 'huggingface:turkish_ner',
 'huggingface:turkish_product_reviews',
 'huggingface:turkish_shrinked_ner',
 'huggingface:turku_ner_corpus',
 'huggingface:tweet_eval',
 'huggingface:tweet_qa',
 'huggingface:tweets_ar_en_parallel',
 'huggingface:tweets_hate_speech_detection',
 'huggingface:twi_text_c3',
 'huggingface:twi_wordsim353',
 'huggingface:tydiqa',
 'huggingface:ubuntu_dialogs_corpus',
 'huggingface:udhr',
 'huggingface:um005',
 'huggingface:un_ga',
 'huggingface:un_multi',
 'huggingface:un_pc',
 'huggingface:universal_dependencies',
 'huggingface:universal_morphologies',
 'huggingface:urdu_fake_news',
 'huggingface:urdu_sentiment_corpus',
 'huggingface:vctk',
 'huggingface:vivos',
 'huggingface:web_nlg',
 'huggingface:web_of_science',
 'huggingface:web_questions',
 'huggingface:weibo_ner',
 'huggingface:wi_locness',
 'huggingface:wiki40b',
 'huggingface:wiki_asp',
 'huggingface:wiki_atomic_edits',
 'huggingface:wiki_auto',
 'huggingface:wiki_bio',
 'huggingface:wiki_dpr',
 'huggingface:wiki_hop',
 'huggingface:wiki_lingua',
 'huggingface:wiki_movies',
 'huggingface:wiki_qa',
 'huggingface:wiki_qa_ar',
 'huggingface:wiki_snippets',
 'huggingface:wiki_source',
 'huggingface:wiki_split',
 'huggingface:wiki_summary',
 'huggingface:wikiann',
 'huggingface:wikicorpus',
 'huggingface:wikihow',
 'huggingface:wikipedia',
 'huggingface:wikisql',
 'huggingface:wikitext',
 'huggingface:wikitext_tl39',
 'huggingface:wili_2018',
 'huggingface:wino_bias',
 'huggingface:winograd_wsc',
 'huggingface:winogrande',
 'huggingface:wiqa',
 'huggingface:wisesight1000',
 'huggingface:wisesight_sentiment',
 ...]

Załaduj zbiór danych

tfds.load

Najłatwiejszym sposobem załadowania zestawu danych jest tfds.load . To będzie:

  1. Pobierz dane i zapisz je jako pliki tfrecord .
  2. Załaduj tfrecord i utwórz tf.data.Dataset .
ds = tfds.load('mnist', split='train', shuffle_files=True)
assert isinstance(ds, tf.data.Dataset)
print(ds)
<_OptionsDataset element_spec={'image': TensorSpec(shape=(28, 28, 1), dtype=tf.uint8, name=None), 'label': TensorSpec(shape=(), dtype=tf.int64, name=None)}>
2022-02-07 04:07:40.542243: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected

Kilka typowych argumentów:

  • split= : Który podział należy odczytać (np 'train' , ['train', 'test'] , 'train[80%:]' ,...). Zobacz nasz dzielony przewodnik po interfejsach API .
  • shuffle_files= : Kontroluj, czy tasować pliki pomiędzy każdą epoką (TFDS przechowuje duże zestawy danych w wielu mniejszych plikach).
  • data_dir= : Lokalizacja, w której zapisany jest zestaw danych (domyślnie ~/tensorflow_datasets/ )
  • with_info=True : Zwraca tfds.core.DatasetInfo zawierający metadane zestawu danych
  • download=False : Wyłącz pobieranie

tfds.builder

tfds.load to cienkie opakowanie wokół tfds.core.DatasetBuilder . Możesz uzyskać te same dane wyjściowe za pomocą interfejsu API tfds.core.DatasetBuilder :

builder = tfds.builder('mnist')
# 1. Create the tfrecord files (no-op if already exists)
builder.download_and_prepare()
# 2. Load the `tf.data.Dataset`
ds = builder.as_dataset(split='train', shuffle_files=True)
print(ds)
<_OptionsDataset element_spec={'image': TensorSpec(shape=(28, 28, 1), dtype=tf.uint8, name=None), 'label': TensorSpec(shape=(), dtype=tf.int64, name=None)}>

CLI tfds build

Jeśli chcesz wygenerować określony zestaw danych, możesz użyć wiersza poleceń tfds . Na przykład:

tfds build mnist

Sprawdź w dokumentacji dostępne flagi.

Iteruj po zbiorze danych

Jak dyktować

Domyślnie obiekt tf.data.Dataset zawiera dict tf.Tensor s:

ds = tfds.load('mnist', split='train')
ds = ds.take(1)  # Only take a single example

for example in ds:  # example is `{'image': tf.Tensor, 'label': tf.Tensor}`
  print(list(example.keys()))
  image = example["image"]
  label = example["label"]
  print(image.shape, label)
['image', 'label']
(28, 28, 1) tf.Tensor(4, shape=(), dtype=int64)
2022-02-07 04:07:41.932638: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

Aby poznać nazwy i strukturę klawiszy dict , przejrzyj dokumentację zestawu danych w naszym katalogu . Na przykład: dokumentacja mnist .

Jako krotka ( as_supervised=True )

Używając as_supervised=True , możesz zamiast tego uzyskać krotkę (features, label) dla nadzorowanych zestawów danych.

ds = tfds.load('mnist', split='train', as_supervised=True)
ds = ds.take(1)

for image, label in ds:  # example is (image, label)
  print(image.shape, label)
(28, 28, 1) tf.Tensor(4, shape=(), dtype=int64)
2022-02-07 04:07:42.593594: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

Jako numpy ( tfds.as_numpy )

Używa tfds.as_numpy do konwersji:

  • tf.Tensor -> np.array
  • tf.data.Dataset -> Iterator[Tree[np.array]] ( Tree może być dowolnie zagnieżdżonym Dict , Tuple )
ds = tfds.load('mnist', split='train', as_supervised=True)
ds = ds.take(1)

for image, label in tfds.as_numpy(ds):
  print(type(image), type(label), label)
<class 'numpy.ndarray'> <class 'numpy.int64'> 4
2022-02-07 04:07:43.220027: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

Jak wsadowo tf.Tensor ( batch_size=-1 )

Używając batch_size=-1 , możesz załadować pełny zestaw danych w jednej partii.

Można to połączyć z as_supervised=True i tfds.as_numpy , aby uzyskać dane jako (np.array, np.array) :

image, label = tfds.as_numpy(tfds.load(
    'mnist',
    split='test',
    batch_size=-1,
    as_supervised=True,
))

print(type(image), image.shape)
<class 'numpy.ndarray'> (10000, 28, 28, 1)

Uważaj, aby zestaw danych mógł zmieścić się w pamięci i aby wszystkie przykłady miały ten sam kształt.

Porównaj swoje zbiory danych

Analiza porównawcza zbioru danych to proste wywołanie tfds.benchmark dla dowolnego elementu iteracyjnego (np. tf.data.Dataset , tfds.as_numpy ,...).

ds = tfds.load('mnist', split='train')
ds = ds.batch(32).prefetch(1)

tfds.benchmark(ds, batch_size=32)
tfds.benchmark(ds, batch_size=32)  # Second epoch much faster due to auto-caching
************ Summary ************

Examples/sec (First included) 42295.82 ex/sec (total: 60000 ex, 1.42 sec)
Examples/sec (First only) 131.50 ex/sec (total: 32 ex, 0.24 sec)
Examples/sec (First excluded) 51026.08 ex/sec (total: 59968 ex, 1.18 sec)

************ Summary ************

Examples/sec (First included) 204278.25 ex/sec (total: 60000 ex, 0.29 sec)
Examples/sec (First only) 1444.72 ex/sec (total: 32 ex, 0.02 sec)
Examples/sec (First excluded) 220821.83 ex/sec (total: 59968 ex, 0.27 sec)
  • Nie zapomnij znormalizować wyników według rozmiaru partii za pomocą parametru batch_size= kwarg.
  • W podsumowaniu pierwsza partia rozgrzewkowa jest oddzielona od pozostałych w celu przechwycenia dodatkowego czasu konfiguracji tf.data.Dataset (np. inicjalizacja buforów,...).
  • Zauważ, że druga iteracja jest znacznie szybsza dzięki automatycznemu buforowaniu TFDS .
  • tfds.benchmark zwraca tfds.core.BenchmarkResult , który można sprawdzić w celu dalszej analizy.

Zbuduj kompleksowy potok

Aby przejść dalej, możesz spojrzeć:

Wyobrażanie sobie

tfds.as_dataframe

Obiekty tf.data.Dataset można przekonwertować na pandas.DataFrame za pomocą tfds.as_dataframe w celu wizualizacji w Colab .

  • Dodaj tfds.core.DatasetInfo jako drugi argument tfds.as_dataframe , aby wizualizować obrazy, dźwięk, teksty, filmy,...
  • Użyj ds.take(x) , aby wyświetlić tylko pierwsze x przykładów. pandas.DataFrame załaduje pełny zestaw danych w pamięci i może być bardzo drogi do wyświetlenia.
ds, info = tfds.load('mnist', split='train', with_info=True)

tfds.as_dataframe(ds.take(4), info)
2022-02-07 04:07:47.001241: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

tfds.show_examples

tfds.show_examples zwraca matplotlib.figure.Figure (obecnie obsługiwane są tylko zestawy danych obrazów):

ds, info = tfds.load('mnist', split='train', with_info=True)

fig = tfds.show_examples(ds, info)
2022-02-07 04:07:48.083706: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

png

Uzyskaj dostęp do metadanych zbioru danych

Wszystkie kreatory zawierają obiekt tfds.core.DatasetInfo zawierający metadane zestawu danych.

Dostęp do niego można uzyskać poprzez:

ds, info = tfds.load('mnist', with_info=True)
builder = tfds.builder('mnist')
info = builder.info

Informacje o zestawie danych zawierają dodatkowe informacje o zestawie danych (wersja, cytat, strona główna, opis,...).

print(info)
tfds.core.DatasetInfo(
    name='mnist',
    full_name='mnist/3.0.1',
    description="""
    The MNIST database of handwritten digits.
    """,
    homepage='http://yann.lecun.com/exdb/mnist/',
    data_path='gs://tensorflow-datasets/datasets/mnist/3.0.1',
    download_size=11.06 MiB,
    dataset_size=21.00 MiB,
    features=FeaturesDict({
        'image': Image(shape=(28, 28, 1), dtype=tf.uint8),
        'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=10),
    }),
    supervised_keys=('image', 'label'),
    disable_shuffling=False,
    splits={
        'test': <SplitInfo num_examples=10000, num_shards=1>,
        'train': <SplitInfo num_examples=60000, num_shards=1>,
    },
    citation="""@article{lecun2010mnist,
      title={MNIST handwritten digit database},
      author={LeCun, Yann and Cortes, Corinna and Burges, CJ},
      journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist},
      volume={2},
      year={2010}
    }""",
)

Metadane funkcji (nazwy etykiet, kształt obrazu,...)

Uzyskaj dostęp do tfds.features.FeatureDict :

info.features
FeaturesDict({
    'image': Image(shape=(28, 28, 1), dtype=tf.uint8),
    'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=10),
})

Liczba klas, nazwy etykiet:

print(info.features["label"].num_classes)
print(info.features["label"].names)
print(info.features["label"].int2str(7))  # Human readable version (8 -> 'cat')
print(info.features["label"].str2int('7'))
10
['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
7
7

Kształty, typy:

print(info.features.shape)
print(info.features.dtype)
print(info.features['image'].shape)
print(info.features['image'].dtype)
{'image': (28, 28, 1), 'label': ()}
{'image': tf.uint8, 'label': tf.int64}
(28, 28, 1)
<dtype: 'uint8'>

Metadane podziału (np. nazwy podziału, liczba przykładów,...)

Uzyskaj dostęp do tfds.core.SplitDict :

print(info.splits)
{'test': <SplitInfo num_examples=10000, num_shards=1>, 'train': <SplitInfo num_examples=60000, num_shards=1>}

Dostępne podziały:

print(list(info.splits.keys()))
['test', 'train']

Uzyskaj informacje o indywidualnym podziale:

print(info.splits['train'].num_examples)
print(info.splits['train'].filenames)
print(info.splits['train'].num_shards)
60000
['gs://tensorflow-datasets/datasets/mnist/3.0.1/mnist-train.tfrecord-00000-of-00001']
1

Działa również z subsplit API:

print(info.splits['train[15%:75%]'].num_examples)
print(info.splits['train[15%:75%]'].file_instructions)
36000
[FileInstruction(filename='gs://tensorflow-datasets/datasets/mnist/3.0.1/mnist-train.tfrecord-00000-of-00001', skip=9000, take=36000, num_examples=36000)]

Rozwiązywanie problemów

Pobieranie ręczne (jeśli pobieranie się nie powiedzie)

Jeśli pobieranie z jakiegoś powodu się nie powiedzie (np. offline,...). Zawsze możesz ręcznie pobrać dane samodzielnie i umieścić je w manual_dir (domyślnie ~/tensorflow_datasets/download/manual/ .

Aby dowiedzieć się, które adresy URL pobrać, zajrzyj do:

Naprawianie NonMatchingChecksumError

TFDS zapewnia determinizm, sprawdzając sumy kontrolne pobranych adresów URL. Jeśli zostanie zgłoszony NonMatchingChecksumError , może to wskazywać:

  • Witryna może być niedostępna (np. 503 status code ). Sprawdź adres URL.
  • W przypadku adresów URL Dysku Google spróbuj ponownie później, ponieważ Dysk czasami odrzuca pobieranie, gdy zbyt wiele osób uzyskuje dostęp do tego samego adresu URL. Zobacz błąd
  • Oryginalne pliki zestawów danych mogły zostać zaktualizowane. W takim przypadku konstruktor zestawu danych TFDS powinien zostać zaktualizowany. Proszę otworzyć nowy numer Github lub PR:
    • Zarejestruj nowe sumy kontrolne za pomocą tfds build --register_checksums
    • Na koniec zaktualizuj kod generowania zestawu danych.
    • Zaktualizuj zbiór danych VERSION
    • Zaktualizuj zbiór danych RELEASE_NOTES : Co spowodowało zmianę sum kontrolnych? Czy niektóre przykłady uległy zmianie?
    • Upewnij się, że zestaw danych nadal można zbudować.
    • Wyślij nam PR

Cytat

Jeśli używasz tensorflow-datasets dla artykułu, dołącz następujące cytaty, oprócz wszelkich cytatów specyficznych dla używanych zestawów danych (które można znaleźć w katalogu zestawów danych ).

@misc{TFDS,
  title = { {TensorFlow Datasets}, A collection of ready-to-use datasets},
  howpublished = {\url{https://www.tensorflow.org/datasets} },
}