Tài liệu tham khảo:
XNLI
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/XNLI')
- Sự miêu tả :
The Cross-lingual Natural Language Inference (XNLI) corpus is a crowd-sourced collection of 5,000 test and
2,500 dev pairs for the MultiNLI corpus. The pairs are annotated with textual entailment and translated into
14 languages: French, Spanish, German, Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese,
Hindi, Swahili and Urdu. This results in 112.5k annotated pairs. Each premise can be associated with the
corresponding hypothesis in the 15 languages, summing up to more than 1.5M combinations. The corpus is made to
evaluate how to perform inference in any language (including low-resources ones like Swahili or Urdu) when only
English NLI data is available at training time. One solution is cross-lingual sentence encoding, for which XNLI
is an evaluation benchmark.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 75150 |
'validation' | 37350 |
- Đặc trưng :
{
"language": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"gold_label": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tydiqa
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tydiqa')
- Sự miêu tả :
Gold passage task (GoldP): Given a passage that is guaranteed to contain the
answer, predict the single contiguous span of characters that answers the question. This is more similar to
existing reading comprehension datasets (as opposed to the information-seeking task outlined above).
This task is constructed with two goals in mind: (1) more directly comparing with prior work and (2) providing
a simplified way for researchers to use TyDi QA by providing compatibility with existing code for SQuAD 1.1,
XQuAD, and MLQA. Toward these goals, the gold passage task differs from the primary task in several ways:
only the gold answer passage is provided rather than the entire Wikipedia article;
unanswerable questions have been discarded, similar to MLQA and XQuAD;
we evaluate with the SQuAD 1.1 metrics like XQuAD; and
Thai and Japanese are removed since the lack of whitespace breaks some tools.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'train' | 49881 |
'validation' | 5077 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
BIỆT ĐỘI
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/SQuAD')
- Sự miêu tả :
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'train' | 87599 |
'validation' | 10570 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.af
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.af')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1000 |
'train' | 5000 |
'validation' | 1000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.ar
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.ar')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.bg
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.bg')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.bn
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.bn')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1000 |
'train' | 10000 |
'validation' | 1000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.de
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.de')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.el
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.el')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.en
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.en')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.es
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.es')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.et
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.et')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 15000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.eu
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.eu')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 10000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.fa
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.fa')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.fi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.fi')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.fr
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.fr')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.he
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.he')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.hi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.hi')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1000 |
'train' | 5000 |
'validation' | 1000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.hu
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.hu')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.id
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.id')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.it
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.it')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.ja
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.ja')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.jv
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.jv')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 100 |
'train' | 100 |
'validation' | 100 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.ka
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.ka')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 10000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.kk
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.kk')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1000 |
'train' | 1000 |
'validation' | 1000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.ko
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.ko')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.ml
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.ml')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1000 |
'train' | 10000 |
'validation' | 1000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.mr
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.mr')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1000 |
'train' | 5000 |
'validation' | 1000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.ms
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.ms')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1000 |
'train' | 20000 |
'validation' | 1000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.my
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.my')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 100 |
'train' | 100 |
'validation' | 100 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.nl
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.nl')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.pt
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.pt')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.ru
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.ru')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.sw
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.sw')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1000 |
'train' | 1000 |
'validation' | 1000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.ta
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.ta')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1000 |
'train' | 15000 |
'validation' | 1000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.te
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.te')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1000 |
'train' | 1000 |
'validation' | 1000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.th
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.th')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.tl
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.tl')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1000 |
'train' | 10000 |
'validation' | 1000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.tr
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.tr')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.ur
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.ur')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1000 |
'train' | 20000 |
'validation' | 1000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.vi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.vi')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.yo
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.yo')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 100 |
'train' | 100 |
'validation' | 100 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
PAN-X.zh
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAN-X.zh')
- Sự miêu tả :
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 10000 |
'train' | 20000 |
'validation' | 10000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"ner_tags": {
"feature": {
"num_classes": 7,
"names": [
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"langs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.ar.ar
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.ar.ar')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 5335 |
'validation' | 517 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.ar.de
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.ar.de')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1649 |
'validation' | 207 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.ar.vi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.ar.vi')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 2047 |
'validation' | 163 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.ar.zh
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.ar.zh')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1912 |
'validation' | 188 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.ar.en
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.ar.en')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 5335 |
'validation' | 517 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.ar.es
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.ar.es')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1978 |
'validation' | 161 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.ar.hi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.ar.hi')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1831 |
'validation' | 186 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.de.ar
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.de.ar')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1649 |
'validation' | 207 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.de.de
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.de.de')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 4517 |
'validation' | 512 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.de.vi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.de.vi')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1675 |
'validation' | 182 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.de.zh
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.de.zh')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1621 |
'validation' | 190 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.de.en
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.de.en')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 4517 |
'validation' | 512 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.de.es
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.de.es')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1776 |
'validation' | 196 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.de.hi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.de.hi')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 14h30 |
'validation' | 163 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.vi.ar
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.vi.ar')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 2047 |
'validation' | 163 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.vi.de
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.vi.de')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1675 |
'validation' | 182 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.vi.vi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.vi.vi')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 5495 |
'validation' | 511 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.vi.zh
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.vi.zh')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1943 |
'validation' | 184 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.vi.en
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.vi.en')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 5495 |
'validation' | 511 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.vi.es
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.vi.es')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 2018 |
'validation' | 189 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.vi.hi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.vi.hi')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1947 |
'validation' | 177 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.zh.ar
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.zh.ar')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1912 |
'validation' | 188 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.zh.de
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.zh.de')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1621 |
'validation' | 190 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.zh.vi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.zh.vi')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1943 |
'validation' | 184 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.zh.zh
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.zh.zh')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 5137 |
'validation' | 504 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.zh.en
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.zh.en')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 5137 |
'validation' | 504 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.zh.es
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.zh.es')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1947 |
'validation' | 161 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.zh.hi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.zh.hi')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1767 |
'validation' | 189 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.en.ar
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.en.ar')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 5335 |
'validation' | 517 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.en.de
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.en.de')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 4517 |
'validation' | 512 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.en.vi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.en.vi')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 5495 |
'validation' | 511 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.en.zh
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.en.zh')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 5137 |
'validation' | 504 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.en.en
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.en.en')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 11590 |
'validation' | 1148 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.en.es
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.en.es')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 5253 |
'validation' | 500 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.en.hi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.en.hi')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 4918 |
'validation' | 507 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.es.ar
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.es.ar')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1978 |
'validation' | 161 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.es.de
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.es.de')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1776 |
'validation' | 196 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.es.vi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.es.vi')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 2018 |
'validation' | 189 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.es.zh
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.es.zh')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1947 |
'validation' | 161 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.es.en
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.es.en')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 5253 |
'validation' | 500 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.es.es
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.es.es')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 5253 |
'validation' | 500 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.es.hi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.es.hi')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1723 |
'validation' | 187 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.hi.ar
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.hi.ar')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1831 |
'validation' | 186 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.hi.de
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.hi.de')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 14h30 |
'validation' | 163 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.hi.vi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.hi.vi')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1947 |
'validation' | 177 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.hi.zh
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.hi.zh')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1767 |
'validation' | 189 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.hi.en
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.hi.en')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 4918 |
'validation' | 507 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.hi.es
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.hi.es')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1723 |
'validation' | 187 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
MLQA.hi.hi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/MLQA.hi.hi')
- Sự miêu tả :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 4918 |
'validation' | 507 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
XQuAD.ar
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/XQuAD.ar')
- Sự miêu tả :
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question
answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from
the development set of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into
ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. Consequently,
the dataset is entirely parallel across 11 languages.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1190 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
XQuAD.de
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/XQuAD.de')
- Sự miêu tả :
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question
answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from
the development set of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into
ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. Consequently,
the dataset is entirely parallel across 11 languages.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1190 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
XQuAD.vi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/XQuAD.vi')
- Sự miêu tả :
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question
answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from
the development set of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into
ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. Consequently,
the dataset is entirely parallel across 11 languages.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1190 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
XQuAD.zh
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/XQuAD.zh')
- Sự miêu tả :
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question
answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from
the development set of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into
ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. Consequently,
the dataset is entirely parallel across 11 languages.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1190 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
XQuAD.en
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/XQuAD.en')
- Sự miêu tả :
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question
answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from
the development set of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into
ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. Consequently,
the dataset is entirely parallel across 11 languages.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1190 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
XQuAD.es
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/XQuAD.es')
- Sự miêu tả :
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question
answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from
the development set of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into
ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. Consequently,
the dataset is entirely parallel across 11 languages.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1190 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
XQuAD.hi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/XQuAD.hi')
- Sự miêu tả :
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question
answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from
the development set of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into
ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. Consequently,
the dataset is entirely parallel across 11 languages.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1190 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
XQuAD.el
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/XQuAD.el')
- Sự miêu tả :
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question
answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from
the development set of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into
ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. Consequently,
the dataset is entirely parallel across 11 languages.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1190 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
XQuAD.ru
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/XQuAD.ru')
- Sự miêu tả :
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question
answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from
the development set of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into
ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. Consequently,
the dataset is entirely parallel across 11 languages.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1190 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
XQuAD.th
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/XQuAD.th')
- Sự miêu tả :
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question
answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from
the development set of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into
ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. Consequently,
the dataset is entirely parallel across 11 languages.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1190 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
XQuAD.tr
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/XQuAD.tr')
- Sự miêu tả :
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question
answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from
the development set of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into
ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. Consequently,
the dataset is entirely parallel across 11 languages.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1190 |
- Đặc trưng :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
bucc18.de
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/bucc18.de')
- Sự miêu tả :
Building and Using Comparable Corpora
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 9580 |
'validation' | 1038 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
bucc18.fr
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/bucc18.fr')
- Sự miêu tả :
Building and Using Comparable Corpora
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 9086 |
'validation' | 929 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
bucc18.zh
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/bucc18.zh')
- Sự miêu tả :
Building and Using Comparable Corpora
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1899 |
'validation' | 257 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
bucc18.ru
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/bucc18.ru')
- Sự miêu tả :
Building and Using Comparable Corpora
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 14435 |
'validation' | 2374 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
PAWS-X.de
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAWS-X.de')
- Sự miêu tả :
This dataset contains 23,659 human translated PAWS evaluation pairs and 296,406 machine translated training
pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. All
translated pairs are sourced from examples in PAWS-Wiki.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 2000 |
'train' | 49380 |
'validation' | 2000 |
- Đặc trưng :
{
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
PAWS-X.en
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAWS-X.en')
- Sự miêu tả :
This dataset contains 23,659 human translated PAWS evaluation pairs and 296,406 machine translated training
pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. All
translated pairs are sourced from examples in PAWS-Wiki.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 2000 |
'train' | 49175 |
'validation' | 2000 |
- Đặc trưng :
{
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
PAWS-X.es
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAWS-X.es')
- Sự miêu tả :
This dataset contains 23,659 human translated PAWS evaluation pairs and 296,406 machine translated training
pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. All
translated pairs are sourced from examples in PAWS-Wiki.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 2000 |
'train' | 49401 |
'validation' | 1961 |
- Đặc trưng :
{
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
PAWS-X.fr
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAWS-X.fr')
- Sự miêu tả :
This dataset contains 23,659 human translated PAWS evaluation pairs and 296,406 machine translated training
pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. All
translated pairs are sourced from examples in PAWS-Wiki.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 2000 |
'train' | 49399 |
'validation' | 1988 |
- Đặc trưng :
{
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
PAWS-X.ja
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAWS-X.ja')
- Sự miêu tả :
This dataset contains 23,659 human translated PAWS evaluation pairs and 296,406 machine translated training
pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. All
translated pairs are sourced from examples in PAWS-Wiki.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 2000 |
'train' | 49401 |
'validation' | 2000 |
- Đặc trưng :
{
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
PAWS-X.ko
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAWS-X.ko')
- Sự miêu tả :
This dataset contains 23,659 human translated PAWS evaluation pairs and 296,406 machine translated training
pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. All
translated pairs are sourced from examples in PAWS-Wiki.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1999 |
'train' | 49164 |
'validation' | 2000 |
- Đặc trưng :
{
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
PAWS-X.zh
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/PAWS-X.zh')
- Sự miêu tả :
This dataset contains 23,659 human translated PAWS evaluation pairs and 296,406 machine translated training
pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. All
translated pairs are sourced from examples in PAWS-Wiki.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 2000 |
'train' | 49401 |
'validation' | 2000 |
- Đặc trưng :
{
"sentence1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.afr
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.afr')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.ara
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.ara')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.ben
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.ben')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.bul
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.bul')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.deu
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.deu')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.cmn
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.cmn')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.ell
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.ell')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.est
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.est')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.eus
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.eus')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.fin
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.fin')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.fra
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.fra')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.heb
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.heb')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.hin
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.hin')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.hun
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.hun')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.ind
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.ind')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.ita
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.ita')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.jav
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.jav')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 205 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.jpn
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.jpn')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.kat
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.kat')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 746 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.kaz
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.kaz')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 575 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.kor
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.kor')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.mal
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.mal')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 687 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.mar
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.mar')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.nld
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.nld')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.pes
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.pes')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.por
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.por')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.rus
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.rus')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.spa
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.spa')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.swh
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.swh')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 390 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.tam
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.tam')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 307 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.tel
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.tel')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 234 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.tgl
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.tgl')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.tha
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.tha')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 548 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.tur
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.tur')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.urd
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.urd')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tatoeba.vie
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/tatoeba.vie')
- Sự miêu tả :
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'validation' | 1000 |
- Đặc trưng :
{
"source_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"source_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"target_lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
udpos.tiếng Nam Phi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Afrikaans')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 425 |
'train' | 1315 |
'validation' | 194 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.tiếng Ả Rập
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Arabic')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1680 |
'train' | 6075 |
'validation' | 909 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Basque
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Basque')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1799 |
'train' | 5396 |
'validation' | 1798 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Tiếng Bungari
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Bulgarian')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1116 |
'train' | 8907 |
'validation' | 1115 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.tiếng Hà Lan
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Dutch')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1471 |
'train' | 18051 |
'validation' | 1394 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.English
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.English')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 5440 |
'train' | 21253 |
'validation' | 3974 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.tiếng Estonia
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Estonian')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 3760 |
'train' | 25749 |
'validation' | 3125 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Phần Lan
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Finnish')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 4422 |
'train' | 27198 |
'validation' | 3239 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.tiếng Pháp
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.French')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 9465 |
'train' | 47308 |
'validation' | 5979 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.tiếng Đức
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.German')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 22458 |
'train' | 166849 |
'validation' | 19233 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Hy Lạp
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Greek')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 2809 |
'train' | 28152 |
'validation' | 2559 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.tiếng Do Thái
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Hebrew')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 491 |
'train' | 5241 |
'validation' | 484 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Tiếng Hindi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Hindi')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 2684 |
'train' | 13304 |
'validation' | 1659 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Hungary
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Hungarian')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 449 |
'train' | 910 |
'validation' | 441 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.tiếng Indonesia
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Indonesian')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1557 |
'train' | 4477 |
'validation' | 559 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Italian
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Italian')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 3518 |
'train' | 29685 |
'validation' | 2278 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.tiếng Nhật
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Japanese')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 2372 |
'train' | 7125 |
'validation' | 511 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Kazakhstan
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Kazakh')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1047 |
'train' | 31 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Hàn Quốc
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Korean')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 4276 |
'train' | 27410 |
'validation' | 3016 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.tiếng Trung
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Chinese')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 5528 |
'train' | 18998 |
'validation' | 3038 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Marathi
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Marathi')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 47 |
'train' | 373 |
'validation' | 46 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Persian
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Persian')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 600 |
'train' | 4798 |
'validation' | 599 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Tiếng Bồ Đào Nha
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Portuguese')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 2681 |
'train' | 17992 |
'validation' | 1770 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.tiếng Nga
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Russian')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 11336 |
'train' | 67435 |
'validation' | 9960 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Tiếng Tây Ban Nha
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Spanish')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 3147 |
'train' | 28492 |
'validation' | 3054 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Tagalog
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Tagalog')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 55 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Tamil
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Tamil')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 120 |
'train' | 400 |
'validation' | 80 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Telugu
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Telugu')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 146 |
'train' | 1051 |
'validation' | 131 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Thai
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Thai')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 1000 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Thổ Nhĩ Kỳ
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Turkish')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 4785 |
'train' | 3664 |
'validation' | 988 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Urdu
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Urdu')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 535 |
'train' | 4043 |
'validation' | 552 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Tiếng Việt
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Vietnamese')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 800 |
'train' | 1400 |
'validation' | 800 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
udpos.Yoruba
Sử dụng lệnh sau để tải tập dữ liệu này trong TFDS:
ds = tfds.load('huggingface:xtreme/udpos.Yoruba')
- Sự miêu tả :
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
- Giấy phép : Không có giấy phép được biết đến
- Phiên bản : 1.0.0
- Chia tách :
Tách ra | Ví dụ |
---|---|
'test' | 100 |
- Đặc trưng :
{
"tokens": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"pos_tags": {
"feature": {
"num_classes": 17,
"names": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}