Referências:
xsum_factuality
Use o seguinte comando para carregar esse conjunto de dados no TFDS:
ds = tfds.load('huggingface:xsum_factuality/xsum_factuality')
- Descrição :
Neural abstractive summarization models are highly prone to hallucinate content that is unfaithful to the input
document. The popular metric such as ROUGE fails to show the severity of the problem. The dataset consists of
faithfulness and factuality annotations of abstractive summaries for the XSum dataset. We have crowdsourced 3 judgements
for each of 500 x 5 document-system pairs. This will be a valuable resource to the abstractive summarization community.
- Licença : https://creativecommons.org/licenses/by/4.0/
- Versão : 1.1.0
- Divisões :
Dividir | Exemplos |
---|---|
'train' | 5597 |
- Características :
{
"bbcid": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"system": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"summary": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"is_factual": {
"num_classes": 2,
"names": [
"no",
"yes"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"worker_id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
xsum_fidelidade
Use o seguinte comando para carregar esse conjunto de dados no TFDS:
ds = tfds.load('huggingface:xsum_factuality/xsum_faithfulness')
- Descrição :
Neural abstractive summarization models are highly prone to hallucinate content that is unfaithful to the input
document. The popular metric such as ROUGE fails to show the severity of the problem. The dataset consists of
faithfulness and factuality annotations of abstractive summaries for the XSum dataset. We have crowdsourced 3 judgements
for each of 500 x 5 document-system pairs. This will be a valuable resource to the abstractive summarization community.
- Licença : https://creativecommons.org/licenses/by/4.0/
- Versão : 1.1.0
- Divisões :
Dividir | Exemplos |
---|---|
'train' | 11185 |
- Características :
{
"bbcid": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"system": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"summary": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hallucination_type": {
"num_classes": 2,
"names": [
"intrinsic",
"extrinsic"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"hallucinated_span_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"hallucinated_span_end": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"worker_id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}