参考文献:
xsum_factuality
次のコマンドを使用して、このデータセットを TFDS にロードします。
ds = tfds.load('huggingface:xsum_factuality/xsum_factuality')
- 説明:
Neural abstractive summarization models are highly prone to hallucinate content that is unfaithful to the input
document. The popular metric such as ROUGE fails to show the severity of the problem. The dataset consists of
faithfulness and factuality annotations of abstractive summaries for the XSum dataset. We have crowdsourced 3 judgements
for each of 500 x 5 document-system pairs. This will be a valuable resource to the abstractive summarization community.
- ライセンス: https://creativecommons.org/licenses/by/4.0/
- バージョン: 1.1.0
- 分割:
スプリット | 例 |
---|---|
'train' | 5597 |
- 特徴:
{
"bbcid": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"system": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"summary": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"is_factual": {
"num_classes": 2,
"names": [
"no",
"yes"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"worker_id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
xsum_faithfulness
次のコマンドを使用して、このデータセットを TFDS にロードします。
ds = tfds.load('huggingface:xsum_factuality/xsum_faithfulness')
- 説明:
Neural abstractive summarization models are highly prone to hallucinate content that is unfaithful to the input
document. The popular metric such as ROUGE fails to show the severity of the problem. The dataset consists of
faithfulness and factuality annotations of abstractive summaries for the XSum dataset. We have crowdsourced 3 judgements
for each of 500 x 5 document-system pairs. This will be a valuable resource to the abstractive summarization community.
- ライセンス: https://creativecommons.org/licenses/by/4.0/
- バージョン: 1.1.0
- 分割:
スプリット | 例 |
---|---|
'train' | 11185 |
- 特徴:
{
"bbcid": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"system": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"summary": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hallucination_type": {
"num_classes": 2,
"names": [
"intrinsic",
"extrinsic"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"hallucinated_span_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"hallucinated_span_end": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"worker_id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}