Referensi:
en_anotasi
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:xed_en_fi/en_annotated')
- Keterangan :
A multilingual fine-grained emotion dataset. The dataset consists of human annotated Finnish (25k) and English sentences (30k). Plutchik’s
core emotions are used to annotate the dataset with the addition of neutral to create a multilabel multiclass
dataset. The dataset is carefully evaluated using language-specific BERT models and SVMs to
show that XED performs on par with other similar datasets and is therefore a useful tool for
sentiment analysis and emotion detection.
- Lisensi : Lisensi: Lisensi Internasional Creative Commons Attribution 4.0 (CC-BY)
- Versi : 1.1.0
- Perpecahan :
Membelah | Contoh |
---|---|
'train' | 17528 |
- Fitur :
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 9,
"names": [
"neutral",
"anger",
"anticipation",
"disgust",
"fear",
"joy",
"sadness",
"surprise",
"trust"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
en_netral
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:xed_en_fi/en_neutral')
- Keterangan :
A multilingual fine-grained emotion dataset. The dataset consists of human annotated Finnish (25k) and English sentences (30k). Plutchik’s
core emotions are used to annotate the dataset with the addition of neutral to create a multilabel multiclass
dataset. The dataset is carefully evaluated using language-specific BERT models and SVMs to
show that XED performs on par with other similar datasets and is therefore a useful tool for
sentiment analysis and emotion detection.
- Lisensi : Lisensi: Lisensi Internasional Creative Commons Attribution 4.0 (CC-BY)
- Versi : 1.1.0
- Perpecahan :
Membelah | Contoh |
---|---|
'train' | 9675 |
- Fitur :
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"num_classes": 9,
"names": [
"neutral",
"anger",
"anticipation",
"disgust",
"fear",
"joy",
"sadness",
"surprise",
"trust"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
}
fi_beranotasi
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:xed_en_fi/fi_annotated')
- Keterangan :
A multilingual fine-grained emotion dataset. The dataset consists of human annotated Finnish (25k) and English sentences (30k). Plutchik’s
core emotions are used to annotate the dataset with the addition of neutral to create a multilabel multiclass
dataset. The dataset is carefully evaluated using language-specific BERT models and SVMs to
show that XED performs on par with other similar datasets and is therefore a useful tool for
sentiment analysis and emotion detection.
- Lisensi : Lisensi: Lisensi Internasional Creative Commons Attribution 4.0 (CC-BY)
- Versi : 1.1.0
- Perpecahan :
Membelah | Contoh |
---|---|
'train' | 14449 |
- Fitur :
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 9,
"names": [
"neutral",
"anger",
"anticipation",
"disgust",
"fear",
"joy",
"sadness",
"surprise",
"trust"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
fi_netral
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:xed_en_fi/fi_neutral')
- Keterangan :
A multilingual fine-grained emotion dataset. The dataset consists of human annotated Finnish (25k) and English sentences (30k). Plutchik’s
core emotions are used to annotate the dataset with the addition of neutral to create a multilabel multiclass
dataset. The dataset is carefully evaluated using language-specific BERT models and SVMs to
show that XED performs on par with other similar datasets and is therefore a useful tool for
sentiment analysis and emotion detection.
- Lisensi : Lisensi: Lisensi Internasional Creative Commons Attribution 4.0 (CC-BY)
- Versi : 1.1.0
- Perpecahan :
Membelah | Contoh |
---|---|
'train' | 10794 |
- Fitur :
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"num_classes": 9,
"names": [
"neutral",
"anger",
"anticipation",
"disgust",
"fear",
"joy",
"sadness",
"surprise",
"trust"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
}