مراجع:
en_annotated
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:xed_en_fi/en_annotated')
- وصف :
A multilingual fine-grained emotion dataset. The dataset consists of human annotated Finnish (25k) and English sentences (30k). Plutchik’s
core emotions are used to annotate the dataset with the addition of neutral to create a multilabel multiclass
dataset. The dataset is carefully evaluated using language-specific BERT models and SVMs to
show that XED performs on par with other similar datasets and is therefore a useful tool for
sentiment analysis and emotion detection.
- الترخيص : الترخيص: Creative Commons Attribution 4.0 International License (CC-BY)
- الإصدار : 1.1.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'train' | 17528 |
- سمات :
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 9,
"names": [
"neutral",
"anger",
"anticipation",
"disgust",
"fear",
"joy",
"sadness",
"surprise",
"trust"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
محايد
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:xed_en_fi/en_neutral')
- وصف :
A multilingual fine-grained emotion dataset. The dataset consists of human annotated Finnish (25k) and English sentences (30k). Plutchik’s
core emotions are used to annotate the dataset with the addition of neutral to create a multilabel multiclass
dataset. The dataset is carefully evaluated using language-specific BERT models and SVMs to
show that XED performs on par with other similar datasets and is therefore a useful tool for
sentiment analysis and emotion detection.
- الترخيص : الترخيص: Creative Commons Attribution 4.0 International License (CC-BY)
- الإصدار : 1.1.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'train' | 9675 |
- سمات :
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"num_classes": 9,
"names": [
"neutral",
"anger",
"anticipation",
"disgust",
"fear",
"joy",
"sadness",
"surprise",
"trust"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
}
fi_annotated
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:xed_en_fi/fi_annotated')
- وصف :
A multilingual fine-grained emotion dataset. The dataset consists of human annotated Finnish (25k) and English sentences (30k). Plutchik’s
core emotions are used to annotate the dataset with the addition of neutral to create a multilabel multiclass
dataset. The dataset is carefully evaluated using language-specific BERT models and SVMs to
show that XED performs on par with other similar datasets and is therefore a useful tool for
sentiment analysis and emotion detection.
- الترخيص : الترخيص: Creative Commons Attribution 4.0 International License (CC-BY)
- الإصدار : 1.1.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'train' | 14449 |
- سمات :
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 9,
"names": [
"neutral",
"anger",
"anticipation",
"disgust",
"fear",
"joy",
"sadness",
"surprise",
"trust"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
fi_neutral
استخدم الأمر التالي لتحميل مجموعة البيانات هذه في TFDS:
ds = tfds.load('huggingface:xed_en_fi/fi_neutral')
- وصف :
A multilingual fine-grained emotion dataset. The dataset consists of human annotated Finnish (25k) and English sentences (30k). Plutchik’s
core emotions are used to annotate the dataset with the addition of neutral to create a multilabel multiclass
dataset. The dataset is carefully evaluated using language-specific BERT models and SVMs to
show that XED performs on par with other similar datasets and is therefore a useful tool for
sentiment analysis and emotion detection.
- الترخيص : الترخيص: Creative Commons Attribution 4.0 International License (CC-BY)
- الإصدار : 1.1.0
- الإنشقاقات :
ينقسم | أمثلة |
---|---|
'train' | 10794 |
- سمات :
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"num_classes": 9,
"names": [
"neutral",
"anger",
"anticipation",
"disgust",
"fear",
"joy",
"sadness",
"surprise",
"trust"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
}