Références :
et
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/et')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa language et
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
ht
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/ht')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa language ht
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
il
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/it')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa language it
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
identifiant
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/id')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa language id
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
qu
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/qu')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa language qu
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
sw
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/sw')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa language sw
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
zh
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/zh')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa language zh
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
ta
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/ta')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa language ta
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
ème
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/th')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa language th
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
tr
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/tr')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa language tr
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
vi
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/vi')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa language vi
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
traduction-et
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/translation-et')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa English translation for language et
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
traduction-ht
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/translation-ht')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa English translation for language ht
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
traduction-il
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/translation-it')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa English translation for language it
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
identifiant de traduction
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/translation-id')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa English translation for language id
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
traduction-sw
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/translation-sw')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa English translation for language sw
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
traduction-zh
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/translation-zh')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa English translation for language zh
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
traduction-ta
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/translation-ta')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa English translation for language ta
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
traduction-th
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/translation-th')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa English translation for language th
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
traduction-tr
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/translation-tr')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa English translation for language tr
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}
traduction-vi
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:xcopa/translation-vi')
- Description :
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa English translation for language vi
- Licence : Aucune licence connue
- Version : 1.1.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 500 |
'validation' | 100 |
- Caractéristiques :
{
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice1": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"choice2": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"idx": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"changed": {
"dtype": "bool",
"id": null,
"_type": "Value"
}
}